线性代数基本问题 线性无关和秩有什么关系啊

ss22433
高粉答主

推荐于2019-09-01 · 醉心答题,欢迎关注
知道小有建树答主
回答量:645
采纳率:100%
帮助的人:18.9万
展开全部

线性无关和秩的关系是:如果一个矩阵行向量线性无关,那么这个矩阵就是满秩的,也就是秩等于行数或者列数,对于一个向量组来说,向量组线性无关的充分必要条件是这个向量组的秩等于向量个数。

如果齐次线性方程组Ax=0有k个线性无关的解,那么基础解系所含向量的个数n-r(A)>=k,即有 r(A)。

扩展资料:

计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组有解。在这种情况下,如果它的秩等于未知数的数目,则方程有唯一解。如果秩小于未知数个数,则有无穷多个解。

m×n矩阵的秩最大为m和n中的较小者。有尽可能大的秩的矩阵被称为有满秩,类似的,否则矩阵是秩不足的。在线性代数中,一个矩阵A的列秩是A的线性无关的纵列的极大数目。

参考资料:百度百科-最大线性无关向量

上海华然企业咨询
2024-10-28 广告
作为上海华然企业咨询有限公司的一员,我们深知大模型测试对于企业数字化转型与智能决策的重要性。在应对此类测试时,我们注重数据的精准性、算法的先进性及模型的适用性,确保大模型能够精准捕捉市场动态,高效分析企业数据,为管理层提供科学、前瞻的决策支... 点击进入详情页
本回答由上海华然企业咨询提供
是你找到了我
高粉答主

2019-07-08 · 说的都是干货,快来关注
知道小有建树答主
回答量:916
采纳率:100%
帮助的人:43.2万
展开全部

设有n个向量a1,a2...,an(都是m维),如果他们线性无关,那么n个向量组成的向量组的秩就是n。

在线性代数里,矢量空间的一组元素中,若没有矢量可用有限个其他矢量的线性组合所表示,则称为线性无关或线性独立,反之称为线性相关。

在线性代数中,一个矩阵A的列秩是 A的线性无关的纵列的极大数目。类似地,行秩是 A的线性无关的横行的极大数目。矩阵的列秩和行秩总是相等的,因此它们可以简单地称作矩阵 A的秩。通常表示为 rk(A) 或 rank A。

扩展资料:

线性无关和线性相关的性质:

1、对于任一向量组而言,,不是线性无关的就是线性相关的。

2、向量组只包含一个向量a时,a为0向量,则说A线性相关; 若a≠0, 则说A线性无关。

3、包含零向量的任何向量组是线性相关的。

4、含有相同向量的向量组必线性相关。

5、增加向量的个数,不改变向量的相关性。(注意,原本的向量组是线性相关的)

6、减少向量的个数,不改变向量的无关性。(注意,原本的向量组是线性无关的)

7、一个向量组线性无关,则在相同位置处都增加一个分量后得到的新向量组仍线性无关。

8、一个向量组线性相关,则在相同位置处都去掉一个分量后得到的新向量组仍线性相关。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
swqs1995
2012-07-25 · TA获得超过218个赞
知道答主
回答量:129
采纳率:0%
帮助的人:82.5万
展开全部
如果一个矩阵行向量(列向量)线性无关,那么这个矩阵就是满秩的,即秩等于行数(列数)。
所谓秩就是线性无关的行(列)的最大数目。其实行秩等于列秩。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
loverena酱
推荐于2018-03-13 · TA获得超过5274个赞
知道大有可为答主
回答量:1075
采纳率:0%
帮助的人:476万
展开全部
设有n个向量a1,a2...,an(都是m维)
如果他们线性无关,那么他们组成的向量组的秩就是n
言外之意就是他们不能互相表示。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
鲜丽且神勇丶抹香鲸M
2020-06-09 · 贡献了超过467个回答
知道答主
回答量:467
采纳率:0%
帮助的人:24.4万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(5)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式