求函数f(x)=根号(x^2-4x+4)+根号(x^2+4x+4)的单调区间
5个回答
展开全部
f(x)=√(x²-4x+4)+√(x²+4x+4)
=√(x-2)²+√(x+2)²
=|x-2|+|x+2|
则
f(x)=x-2+x+2=2x x≥2
2-x+x+2=4 2>x>-2
2-x-x-2=-2x x≤-2
f(x)在[2,+∞)单调递增
在(-∞,2]单调递减
=√(x-2)²+√(x+2)²
=|x-2|+|x+2|
则
f(x)=x-2+x+2=2x x≥2
2-x+x+2=4 2>x>-2
2-x-x-2=-2x x≤-2
f(x)在[2,+∞)单调递增
在(-∞,2]单调递减
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解
函数解析式可化为:
f(x)=|x-2|+|x+2|.
[ -2x x≤-2
f(x)= [ 4 -2<x≤2
[2x, x>2
∴该函数在区间(-∞, -2]上递减
在区间(2, +∞)上递增。
函数解析式可化为:
f(x)=|x-2|+|x+2|.
[ -2x x≤-2
f(x)= [ 4 -2<x≤2
[2x, x>2
∴该函数在区间(-∞, -2]上递减
在区间(2, +∞)上递增。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
f(x)=根号(x^2-4x+4)+根号(x^2+4x+4)=|x-2|+|x+2|
1.当x>2时 f(x)=x-2+x+2=2x ,f(x)为过原点且(2,正无穷上)单调递增函数
2.当-2=<x<2时 f(x)=-x+2+x+2=4,f(x)在[-2,2]上是平行于x轴的直线
3.当x<-2时 f(x)=-x+2-x-2=-2x,f(x)为过原点且(负无穷,-2)单调递减函数
综合1)2)3)得,
函数f(x)
在(2,正无穷上)单调递增函数,
在(负无穷,-2)单调递减函数,
在[-2,2]上是平行于x轴的直线
1.当x>2时 f(x)=x-2+x+2=2x ,f(x)为过原点且(2,正无穷上)单调递增函数
2.当-2=<x<2时 f(x)=-x+2+x+2=4,f(x)在[-2,2]上是平行于x轴的直线
3.当x<-2时 f(x)=-x+2-x-2=-2x,f(x)为过原点且(负无穷,-2)单调递减函数
综合1)2)3)得,
函数f(x)
在(2,正无穷上)单调递增函数,
在(负无穷,-2)单调递减函数,
在[-2,2]上是平行于x轴的直线
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分(负无穷,-2),[-2,2],(2,正无穷),将F(x)写成分段函数,都是一次和常数的,很容易讨论,说某一区间单调性的时候注意考虑一下在该区间函数是否严格单调,就行了
望采纳哈
望采纳哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询