三角函数 求助; 10
已知a大于0函数fx等于-2asin(2x+派/6)+2a+b当x属于0派/2时-5小于等于fx小于等于1求ab的值...
已知a大于0 函数fx等于-2asin(2x+派/6)+2a+b 当x属于0 派/2时 -5小于等于fx小于等于1 求a b的值
展开
展开全部
已知a大于0,函数f(x)=-2asin(2x+π/6)+2a+b,当x属于[0,π/2]时,-5<=f(x)<=1,求a,b的值
解析:要解本题,首先要知道函数f(x)在区间[0,π/2]上的单调性
∵a>0,∴-2a<0
要求函数f(x)单调递增区,须与函数y=sinx的单调减区间相比较
即,2kπ+π/2<=2x+π/6<=2kπ+3π/2==>kπ+π/6<=x<=kπ+2π/3
∴函数f(x)单调递增区为[kπ+π/6,kπ+2π/3]
∵π/6∈[0,π/2]
∴函数f(x)在区间[0,π/2]上不单调,即在x=π/6时,取极小值
也即,x∈[0,π/6]时单调减;x∈[π/6,π/2]]时单调增;
f(0)=a+b
f(π/6)=b
f(π/2)=3a+b
显然f(π/2)> f(0)
∵当x属于[0,π/2]时,-5<=f(x)<=1,
∴b=-5,3a+b=1==>a=2
∴a=2,b=-5
解析:要解本题,首先要知道函数f(x)在区间[0,π/2]上的单调性
∵a>0,∴-2a<0
要求函数f(x)单调递增区,须与函数y=sinx的单调减区间相比较
即,2kπ+π/2<=2x+π/6<=2kπ+3π/2==>kπ+π/6<=x<=kπ+2π/3
∴函数f(x)单调递增区为[kπ+π/6,kπ+2π/3]
∵π/6∈[0,π/2]
∴函数f(x)在区间[0,π/2]上不单调,即在x=π/6时,取极小值
也即,x∈[0,π/6]时单调减;x∈[π/6,π/2]]时单调增;
f(0)=a+b
f(π/6)=b
f(π/2)=3a+b
显然f(π/2)> f(0)
∵当x属于[0,π/2]时,-5<=f(x)<=1,
∴b=-5,3a+b=1==>a=2
∴a=2,b=-5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询