设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0;f(1)=-2.(1)证明f(x

设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0;f(1)=-2.(1)证明f(x)是奇函数;(2)证明f(x)在R上是减函数... 设函数f(x)对任意x,y∈R,都有f(x+y)=f(x)+f(y),且x>0,f(x)<0;f(1)=-2.(1)证明f(x)是奇函数;(2)证明f(x)在R上是减函数;(3)求f(x)在区间[-3,3]上的最大值和最小值. 展开
 我来答
德深律子遵5708
2014-08-24 · 超过65用户采纳过TA的回答
知道答主
回答量:113
采纳率:0%
帮助的人:132万
展开全部
证明:(1)由f(x+y)=f(x)+f(y),
得f[x+(-x)]=f(x)+f(-x),
∴f(x)+f(-x)=f(0).
又f(0+0)=f(0)+f(0),∴f(0)=0.
从而有f(x)+f(-x)=0.∴f(-x)=-f(x).
∴f(x)是奇函数.
(2)任取x 1 、x 2 ∈R,且x 1 <x 2
则f(x 1 )-f(x 2 )=f(x 1 )-f[x 1 +(x 2 -x 1 )]=f(x 1 )-[f(x 1 )+f(x 2 -x 1 )]=-f(x 2 -x 1 ).
由x 1 <x 2 ,∴x 2 -x 1 >0.∴f(x 2 -x 1 )<0.
∴-f(x 2 -x 1 )>0,即f(x 1 )>f(x 2 ),
从而f(x)在R上是减函数.
(3)由于f(x)在R上是减函数,
故f(x)在[-3,3]上的最大值是f(-3),
最小值为f(3).由f(1)=-2,
得f(3)=f(1+2)=f(1)+f(2)
=f(1)+f(1+1)=f(1)+f(1)+f(1)=3f(1)
=3×(-2)=-6,f(-3)=-f(3)=6.
∴最大值为6,最小值为-6.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式