谁有最全的高中物理定律总结?是最详细的那种包括公式和定律
2个回答
展开全部
一、质点的运动(1)------直线运动
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt2 -Vo2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2 +Vt2)/2]1/2 6.位移S= V平t=Vot + at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt2 -Vo2=-2gS 4.上升最大高度Hm=Vo2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx2+ Sy2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N•m2/kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2 h≈36000 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=Gm1m2/r2 G=6.67×10-11N•m2/kg2 方向在它们的连线上
6.静电力F=KQ1Q2/r2 K=9.0×109N•m2/C2 方向在它们的连线上
7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同
8.安培力F=BILsinθ θ为B与L的夹角 当 L⊥B时: F=BIL , B//L时: F=0
9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB , V//B时: f=0
注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。
2)力矩
1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离
2.转动平衡条件 M顺时针= M逆时针 M的单位为N•m 此处N•m≠J
3)力的合成与分解
1.同一直线上力的合成 同向: F=F1+F2 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成
F=(F12+F22+2F1F2cosα)1/2 F1⊥F2时: F=(F12+F22)1/2
3.合力大小范围 |F1-F2|≤F≤|F1+F2|
4.力的正交分解Fx=Fcosβ Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx
注:(1)力(矢量)的合成与分解遵循平行四边形定则。(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。(3)除公式法外,也可用作图法求解,此时要选择标度严格作图。(4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。
四、动力学(运动和力)
1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2.第二运动定律:F合=ma 或a=F合/m a由合外力决定,与合外力方向一致。
3.第三运动定律F= -F´ 负号表示方向相反,F、F´各自作用在对方,实际应用:反冲运动
4.共点力的平衡F合=0 二力平衡 5.超重:N>G 失重:N<G
注:平衡状态是指物体处于静上或匀速度直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1. 简谐振动F=-KX F:回复力 K:比例系数 X:位移 负号表示F与X始终反向。
2.单摆周期T=2π(L/g)1/2 L:摆长(m) g:当地重力加速度值 成立条件:摆角θ<50
3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固 共振的防止和应用A140
5.波速公式V=S/t=λf=λ/T 波传播过程中,一个周期向前传播一个波长。
6.声波的波速(在空气中) 0℃:332m/s 20℃:344m/s 30℃:349m/s (声波是纵波)
7.波发生明显衍射条件: 障碍物或孔的尺寸比波长小,或者相差不大。
8.波的干涉条件: 两列波频率相同 *(相差恒定、振幅相近、振动方向相同)
注:(1)物体的固有频率与振幅、驱动力频率无关。(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处。(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式。(4)干涉与衍射是波特有。(5)振动图象与波动图象。
六、冲量与动量(物体的受力与动量的变化)
1.动量P=mV P:动量(Kg/S) m:质量(Kg) V:速度(m/S) 方向与速度方向相同
3.冲量I=Ft I:冲量(N•S) F:恒力(N) t:力的作用时间(S) 方向由F决定
4.动量定理I =ΔP 或 Ft= mVt - mVo ΔP: 动量变化ΔP=mVt - mVo 是矢量式
5.动量守恒定律P前总=P后总 P=P´ m1V1+m2V2= m1V1´+ m2V2´
6.弹性碰撞ΔP=0;ΔEK=0 (即系统的动量和动能均守恒)
7.非弹性碰撞ΔP=0;0<ΔEK<ΔEKm ΔEK:损失的动能 EKm:损失的最大动能
8.完全非弹性碰撞ΔP=0;ΔEK=ΔEKm (碰后连在一起成一整体)
9.物体m1以V1初速度与静止的物体m2发生弹性正碰(见教材C158):
V1´=(m1-m2)V1/(m1+m2) V2´=2m1V1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度Vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损 E损=mVo2/2-(M+m)Vt2/2=fL相对 Vt:共同速度 f:阻力
注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上。(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算(3)系统动量守恒的条件:合外力为零或内力远远大于外力,系统在某方向受的合外力为零,则在该方向系统动量守恒(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒。(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加。
七、功和能(功是能量转化的量度)
1.功W=FScosα (定义式) W:功(J) F:恒力(N) S:位移(m) α:F、S间的夹角
2.重力做功Wab=mghab m:物体的质量 g=9.8≈10 hab:a与b高度差(hab=ha-hb)
3.电场力做功Wab=qUab q:电量(C) Uab:a与b之间电势差(V)即Uab=Ua-Ub
4.电功w=UIt (普适式) U:电压(V) I:电流(A) t:通电时间(S)
6.功率P=W/t (定义式) P:功率[瓦(W)] W:t时间内所做的功(J) t:做功所用时间(S)
8.汽车牵引力的功率 P=FV P平=FV平 P:瞬时功率 P平:平均功率
9.汽车以恒定功率启动、 以恒定加速度启动、 汽车最大行驶速度(Vmax=P额/f)
10.电功率P=UI (普适式) U:电路电压(V) I:电路电流(A)
11.焦耳定律Q=I2Rt Q:电热(J) I:电流强度(A) R:电阻值(Ω) t:通电时间(秒)
12.纯电阻电路中I=U/R P=UI=U2/R=I2R Q=W=UIt=U2t/R=I2Rt
13.动能Ek=mv2/2 Ek:动能(J) m:物体质量(Kg) v:物体瞬时速度(m/s)
14.重力势能EP=mgh EP :重力势能(J) g:重力加速度 h:竖直高度(m) (从零势能点起)
15.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
16.动能定理(对物体做正功,物体的动能增加) W合= mVt 2/2 - mVo2/2 W合=ΔEK
W合:外力对物体做的总功 ΔEK:动能变化ΔEK =( mVt 2/2- mVo2/2)
17.机械能守恒定律ΔE=0 EK1+EP1=EK2+EP2 mV12/2+mgh1=mV22/2+ mgh2
18.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG= - ΔEP
注:(1)功率大小表示做功快慢,做功多少表示能量转化多少。(2)O0≤α<90O 做正功; 90O<α≤180O 做负功;α=90o 不做功(力方向与位移(速度)方向垂直时该力不做功)。 (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少。(4)重力做功和电场力做功均与路径无关(见2、3两式)。(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化 (6)能的其它单位换算:1KWh(度)=3.6×106J 1eV=1.60×10-19J。*(7)弹簧弹性势能E=KX2/2 。
八分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol 2.分子直径数量级10-10米
3.油膜法测分子直径d=V/s V:单分子油膜的体积(m3) S:油膜表面积(m2)
4.分子间的引力和斥力(1) r<r0 f引<f斥 F分子力表现为斥力
(2) r=r0 f引=f斥 F分子力=0 E分子势能=Emin(最小值)
(3) r>r0 f引>f斥 F分子力表现为引力
(4) r>10r0 f引=f斥≈0 F分子力≈0 E分子势能≈0
5.热力学第一定律W+Q=ΔE (做功和热传递,这两种改变物体内能的方式,在效果上是等效的) W:外界对物体做的正功(J) Q:物体吸收的热量(J) ΔE:增加的内能(J)
注:(1)布朗粒子不是分子,布朗粒子越小布朗运动越明显,温度越高越剧烈。(2)温度是分子平均动能的标志。(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快。(4)分子力做正功分子势能减小,在r0处F引=F斥且分子势能最小。(5)气体膨胀,外界对气体做负功W<0。(6)物体的内能是指物体所有的分子动能和分子势能的总和。对于理想气体分子间作用力为零,分子势能为零。(7)能的转化和定恒定律,能源的开发与利用见教材A195。(8)r0为分子处于平衡状态时,分子间的距离。
九、气体的性质
1.标准大气压 1atm=1.013×105Pa=76cmHg ( 1Pa=1N/m2 )
2.热力学温度与摄氏温度关系T=t+273 T:热力学温度(K) t:摄氏温度(℃)
3. 理想气体 PV/T=恒量 P:气体压强 V:气体体积 T:热力学温度
十、电场
1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C)
2.库仑定律F=KQ1Q2/r2(在真空中)*F=KQ1Q2/εr2(在介质中) F:点电荷间的作用力(N)
K:静电力常量K=9.0×109N•m2/C2 Q1、Q2:两点荷的电量(C) ε:介电常数 r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。
3.电场强度E=F/q (定义式、计算式) E :电场强度(N/C) q:检验电荷的电量(C) 是矢量
4.真空点电荷形成的电场E=KQ/r2 r:点电荷到该位置的距离(m) Q:点电荷的电亘
5.电场力F=qE F:电场力(N) q:受到电场力的电荷的电量(C) E:电场强度(N/C)
6.电势与电势差UA=εA/q UAB=UA- UB UAB =WAB/q=- ΔεAB/q
7.电场力做功WAB= qUAB WAB:带电体由A到B时电场力所做的功(J) q:带电量(C)
UAB:电场中A、B两点间的电势差(V) (电场力做功与路径无关)
8.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
9.电势能的变化ΔεAB =εB- εA (带电体在电场中从A位置到B位置时电势能的差值)
10.电场力做功与电势能变化ΔεAB= -WAB= -qUAB (电势能的增量等于电场力做功的负值)
11.电容C=Q/U (定义式,计算式) C:电容(F) Q:电量(C) U:电压(两极板电势差)(V)
12.匀强电场的场强E=UAB/d UAB:AB两点间的电压(V) d:AB两点在场强方向的距离(m)
13.带电粒子在电场中的加速(Vo=0) W=ΔEK qu=mVt2/2 Vt=(2qU/m)1/2
14.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类似于平 垂直电杨方向:匀速直线运动L=Vot (在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动 d=at2/2 a=F/m=qE/m
15.*平行板电容器的电容C=εS/4πKd S:两极板正对面积 d:两极板间的垂直距离
注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面。(6)电容单位换算1F=106μF=1012PF (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J。(8)静电的产生、静电的防止和应用要掌握。
1)匀变速直线运动
1.平均速度V平=S/t (定义式) 2.有用推论Vt2 -Vo2=2as
3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2 +Vt2)/2]1/2 6.位移S= V平t=Vot + at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0
8.实验用推论ΔS=aT2 ΔS为相邻连续相等时间(T)内位移之差
9.主要物理量及单位:初速(Vo):m/s 加速度(a):m/s2 末速度(Vt):m/s
时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=3.6Km/h
注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/
2) 自由落体
1.初速度Vo=0 2.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh
注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。
(2)a=g=9.8≈10m/s2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。
3) 竖直上抛
1.位移S=Vot- gt2/2 2.末速度Vt= Vo- gt (g=9.8≈10m/s2 )
3.有用推论Vt2 -Vo2=-2gS 4.上升最大高度Hm=Vo2/2g (抛出点算起)
5.往返时间t=2Vo/g (从抛出落回原位置的时间)
注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。
二、质点的运动(2)----曲线运动 万有引力
1)平抛运动
1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt
3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt2/2
5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2
合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo
7.合位移S=(Sx2+ Sy2)1/2 ,
位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo
注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。
2)匀速圆周运动
1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf
3.向心加速度a=V2/R=ω2R=(2π/T)2R 4.向心力F心=mV2/R=mω2R=m(2π/T)2R
5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR
7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)
8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)
周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s
角速度(ω):rad/s 向心加速度:m/s2
注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。
3)万有引力
1.开普勒第三定律T2/R3=K(=4π2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)
2.万有引力定律F=Gm1m2/r2 G=6.67×10-11N•m2/kg2方向在它们的连线上
3.天体上的重力和重力加速度GMm/R2=mg g=GM/R2 R:天体半径(m)
4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R3)1/2 T=2π(R3/GM)1/2
5.第一(二、三)宇宙速度V1=(g地r地)1/2=7.9Km/s V2=11.2Km/s V3=16.7Km/s
6.地球同步卫星GMm/(R+h)2=m4π2(R+h)/T2 h≈36000 km h:距地球表面的高度
注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的最大环绕速度和最小发射速度均为7.9Km/S。
三、力(常见的力、力矩、力的合成与分解)
1)常见的力
1.重力G=mg方向竖直向下g=9.8m/s2 ≈10 m/s2 作用点在重心 适用于地球表面附近
2.胡克定律F=kX 方向沿恢复形变方向 k:劲度系数(N/m) X:形变量(m)
3.滑动摩擦力f=μN 与物体相对运动方向相反 μ:摩擦因数 N:正压力(N)
4.静摩擦力0≤f静≤fm 与物体相对运动趋势方向相反 fm为最大静摩擦力
5.万有引力F=Gm1m2/r2 G=6.67×10-11N•m2/kg2 方向在它们的连线上
6.静电力F=KQ1Q2/r2 K=9.0×109N•m2/C2 方向在它们的连线上
7.电场力F=Eq E:场强N/C q:电量C 正电荷受的电场力与场强方向相同
8.安培力F=BILsinθ θ为B与L的夹角 当 L⊥B时: F=BIL , B//L时: F=0
9.洛仑兹力f=qVBsinθ θ为B与V的夹角 当V⊥B时: f=qVB , V//B时: f=0
注:(1)劲度系数K由弹簧自身决定(2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定。(3)fm略大于μN 一般视为fm≈μN (4)物理量符号及单位 B:磁感强度(T), L:有效长度(m), I:电流强度(A),V:带电粒子速度(m/S), q:带电粒子(带电体)电量(C),(5)安培力与洛仑兹力方向均用左手定则判定。
2)力矩
1.力矩M=FL L为对应的力的力臂,指力的作用线到转动轴(点)的垂直距离
2.转动平衡条件 M顺时针= M逆时针 M的单位为N•m 此处N•m≠J
3)力的合成与分解
1.同一直线上力的合成 同向: F=F1+F2 反向:F=F1-F2 (F1>F2)
2.互成角度力的合成
F=(F12+F22+2F1F2cosα)1/2 F1⊥F2时: F=(F12+F22)1/2
3.合力大小范围 |F1-F2|≤F≤|F1+F2|
4.力的正交分解Fx=Fcosβ Fy=Fsinβ β为合力与x轴之间的夹角tgβ=Fy/Fx
注:(1)力(矢量)的合成与分解遵循平行四边形定则。(2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立。(3)除公式法外,也可用作图法求解,此时要选择标度严格作图。(4)F1与F2的值一定时,F1与F2的夹角(α角)越大合力越小。(5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化成代数运算。
四、动力学(运动和力)
1.第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。
2.第二运动定律:F合=ma 或a=F合/m a由合外力决定,与合外力方向一致。
3.第三运动定律F= -F´ 负号表示方向相反,F、F´各自作用在对方,实际应用:反冲运动
4.共点力的平衡F合=0 二力平衡 5.超重:N>G 失重:N<G
注:平衡状态是指物体处于静上或匀速度直线状态,或者是匀速转动。
五、振动和波(机械振动与机械振动的传播)
1. 简谐振动F=-KX F:回复力 K:比例系数 X:位移 负号表示F与X始终反向。
2.单摆周期T=2π(L/g)1/2 L:摆长(m) g:当地重力加速度值 成立条件:摆角θ<50
3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固 共振的防止和应用A140
5.波速公式V=S/t=λf=λ/T 波传播过程中,一个周期向前传播一个波长。
6.声波的波速(在空气中) 0℃:332m/s 20℃:344m/s 30℃:349m/s (声波是纵波)
7.波发生明显衍射条件: 障碍物或孔的尺寸比波长小,或者相差不大。
8.波的干涉条件: 两列波频率相同 *(相差恒定、振幅相近、振动方向相同)
注:(1)物体的固有频率与振幅、驱动力频率无关。(2)加强区是波峰与波峰或波谷与波谷相遇处,减弱区则是波峰与波谷相遇处。(3)波只是传播了振动,介质本身不随波发生迁移,是传递能量的一种方式。(4)干涉与衍射是波特有。(5)振动图象与波动图象。
六、冲量与动量(物体的受力与动量的变化)
1.动量P=mV P:动量(Kg/S) m:质量(Kg) V:速度(m/S) 方向与速度方向相同
3.冲量I=Ft I:冲量(N•S) F:恒力(N) t:力的作用时间(S) 方向由F决定
4.动量定理I =ΔP 或 Ft= mVt - mVo ΔP: 动量变化ΔP=mVt - mVo 是矢量式
5.动量守恒定律P前总=P后总 P=P´ m1V1+m2V2= m1V1´+ m2V2´
6.弹性碰撞ΔP=0;ΔEK=0 (即系统的动量和动能均守恒)
7.非弹性碰撞ΔP=0;0<ΔEK<ΔEKm ΔEK:损失的动能 EKm:损失的最大动能
8.完全非弹性碰撞ΔP=0;ΔEK=ΔEKm (碰后连在一起成一整体)
9.物体m1以V1初速度与静止的物体m2发生弹性正碰(见教材C158):
V1´=(m1-m2)V1/(m1+m2) V2´=2m1V1/(m1+m2)
10.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)
11.子弹m水平速度Vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损 E损=mVo2/2-(M+m)Vt2/2=fL相对 Vt:共同速度 f:阻力
注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上。(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算(3)系统动量守恒的条件:合外力为零或内力远远大于外力,系统在某方向受的合外力为零,则在该方向系统动量守恒(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒。(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加。
七、功和能(功是能量转化的量度)
1.功W=FScosα (定义式) W:功(J) F:恒力(N) S:位移(m) α:F、S间的夹角
2.重力做功Wab=mghab m:物体的质量 g=9.8≈10 hab:a与b高度差(hab=ha-hb)
3.电场力做功Wab=qUab q:电量(C) Uab:a与b之间电势差(V)即Uab=Ua-Ub
4.电功w=UIt (普适式) U:电压(V) I:电流(A) t:通电时间(S)
6.功率P=W/t (定义式) P:功率[瓦(W)] W:t时间内所做的功(J) t:做功所用时间(S)
8.汽车牵引力的功率 P=FV P平=FV平 P:瞬时功率 P平:平均功率
9.汽车以恒定功率启动、 以恒定加速度启动、 汽车最大行驶速度(Vmax=P额/f)
10.电功率P=UI (普适式) U:电路电压(V) I:电路电流(A)
11.焦耳定律Q=I2Rt Q:电热(J) I:电流强度(A) R:电阻值(Ω) t:通电时间(秒)
12.纯电阻电路中I=U/R P=UI=U2/R=I2R Q=W=UIt=U2t/R=I2Rt
13.动能Ek=mv2/2 Ek:动能(J) m:物体质量(Kg) v:物体瞬时速度(m/s)
14.重力势能EP=mgh EP :重力势能(J) g:重力加速度 h:竖直高度(m) (从零势能点起)
15.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
16.动能定理(对物体做正功,物体的动能增加) W合= mVt 2/2 - mVo2/2 W合=ΔEK
W合:外力对物体做的总功 ΔEK:动能变化ΔEK =( mVt 2/2- mVo2/2)
17.机械能守恒定律ΔE=0 EK1+EP1=EK2+EP2 mV12/2+mgh1=mV22/2+ mgh2
18.重力做功与重力势能的变化(重力做功等于物体重力势能增量的负值)WG= - ΔEP
注:(1)功率大小表示做功快慢,做功多少表示能量转化多少。(2)O0≤α<90O 做正功; 90O<α≤180O 做负功;α=90o 不做功(力方向与位移(速度)方向垂直时该力不做功)。 (3)重力(弹力、电场力、分子力)做正功,则重力(弹性、电、分子)势能减少。(4)重力做功和电场力做功均与路径无关(见2、3两式)。(5)机械能守恒成立条件:除重力(弹力)外其它力不做功,只是动能和势能之间的转化 (6)能的其它单位换算:1KWh(度)=3.6×106J 1eV=1.60×10-19J。*(7)弹簧弹性势能E=KX2/2 。
八分子动理论、能量守恒定律
1.阿伏加德罗常数NA=6.02×1023/mol 2.分子直径数量级10-10米
3.油膜法测分子直径d=V/s V:单分子油膜的体积(m3) S:油膜表面积(m2)
4.分子间的引力和斥力(1) r<r0 f引<f斥 F分子力表现为斥力
(2) r=r0 f引=f斥 F分子力=0 E分子势能=Emin(最小值)
(3) r>r0 f引>f斥 F分子力表现为引力
(4) r>10r0 f引=f斥≈0 F分子力≈0 E分子势能≈0
5.热力学第一定律W+Q=ΔE (做功和热传递,这两种改变物体内能的方式,在效果上是等效的) W:外界对物体做的正功(J) Q:物体吸收的热量(J) ΔE:增加的内能(J)
注:(1)布朗粒子不是分子,布朗粒子越小布朗运动越明显,温度越高越剧烈。(2)温度是分子平均动能的标志。(3)分子间的引力和斥力同时存在,随分子间距离的增大而减小,但斥力减小得比引力快。(4)分子力做正功分子势能减小,在r0处F引=F斥且分子势能最小。(5)气体膨胀,外界对气体做负功W<0。(6)物体的内能是指物体所有的分子动能和分子势能的总和。对于理想气体分子间作用力为零,分子势能为零。(7)能的转化和定恒定律,能源的开发与利用见教材A195。(8)r0为分子处于平衡状态时,分子间的距离。
九、气体的性质
1.标准大气压 1atm=1.013×105Pa=76cmHg ( 1Pa=1N/m2 )
2.热力学温度与摄氏温度关系T=t+273 T:热力学温度(K) t:摄氏温度(℃)
3. 理想气体 PV/T=恒量 P:气体压强 V:气体体积 T:热力学温度
十、电场
1.两种电荷、电荷守恒定律、元电荷(e=1.60×10-19C)
2.库仑定律F=KQ1Q2/r2(在真空中)*F=KQ1Q2/εr2(在介质中) F:点电荷间的作用力(N)
K:静电力常量K=9.0×109N•m2/C2 Q1、Q2:两点荷的电量(C) ε:介电常数 r:两点荷间的距离(m) 方向在它们的连线上,同种电荷互相排斥,异种电荷互相吸引。
3.电场强度E=F/q (定义式、计算式) E :电场强度(N/C) q:检验电荷的电量(C) 是矢量
4.真空点电荷形成的电场E=KQ/r2 r:点电荷到该位置的距离(m) Q:点电荷的电亘
5.电场力F=qE F:电场力(N) q:受到电场力的电荷的电量(C) E:电场强度(N/C)
6.电势与电势差UA=εA/q UAB=UA- UB UAB =WAB/q=- ΔεAB/q
7.电场力做功WAB= qUAB WAB:带电体由A到B时电场力所做的功(J) q:带电量(C)
UAB:电场中A、B两点间的电势差(V) (电场力做功与路径无关)
8.电势能εA=qUA εA:带电体在A点的电势能(J) q:电量(C) UA:A点的电势(V)
9.电势能的变化ΔεAB =εB- εA (带电体在电场中从A位置到B位置时电势能的差值)
10.电场力做功与电势能变化ΔεAB= -WAB= -qUAB (电势能的增量等于电场力做功的负值)
11.电容C=Q/U (定义式,计算式) C:电容(F) Q:电量(C) U:电压(两极板电势差)(V)
12.匀强电场的场强E=UAB/d UAB:AB两点间的电压(V) d:AB两点在场强方向的距离(m)
13.带电粒子在电场中的加速(Vo=0) W=ΔEK qu=mVt2/2 Vt=(2qU/m)1/2
14.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类似于平 垂直电杨方向:匀速直线运动L=Vot (在带等量异种电荷的平行极板中:E=U/d)
抛运动 平行电场方向:初速度为零的匀加速直线运动 d=at2/2 a=F/m=qE/m
15.*平行板电容器的电容C=εS/4πKd S:两极板正对面积 d:两极板间的垂直距离
注:(1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分。(2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直。(3)常见电场的电场线分布要求熟记,(见图、[教材B7、C178])。(4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关。(5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面.导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面。(6)电容单位换算1F=106μF=1012PF (7)电子伏(eV)是能量的单位,1eV=1.60×10-19J。(8)静电的产生、静电的防止和应用要掌握。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询