4个回答
展开全部
要证(a²b²+b²c²+c²a²)/(a+b+c)≥abc,假设命题成立,则有
(a²b²+b²c²+c²a²)/(a+b+c)≥abc
a²b²+b²c²+c²a²≥abc(a+b+c)=a²bc+ab²c+abc²
两边同时乘以2
2(a²b²+b²c²+c²a²)≥2(a²bc+ab²c+abc²)
2(a²b²+b²c²+c²a²)=a²(b²+c²)+b²(a²+c²)+c²(a²+b²)
≥a²(2bc)+b²(2ac)+c²(2ab)
所以命题成立
(a²b²+b²c²+c²a²)/(a+b+c)≥abc
a²b²+b²c²+c²a²≥abc(a+b+c)=a²bc+ab²c+abc²
两边同时乘以2
2(a²b²+b²c²+c²a²)≥2(a²bc+ab²c+abc²)
2(a²b²+b²c²+c²a²)=a²(b²+c²)+b²(a²+c²)+c²(a²+b²)
≥a²(2bc)+b²(2ac)+c²(2ab)
所以命题成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
郭敦顒回答:
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
若a=b=c,则(a²b²+b²c²+c²a²)/(a+b+c)=abc
命题成立,
当a,b,c不相等时,不妨设
(a,b)>c=1,则
(a²b²+b²c²+c²a²)/(a+b+c)=(a²b²+b²+a²)/(a+b+1)
abc= ab,
比较(a²b²+b²+a²)/(a+b+1)与ab的大小,
若a>b时,不妨设b=1,则
(a²b²+b²+a²)/(a+b+1)=(2a²+1)/(a+2),
ab=a,
比较(a²b²+b²+a²)/(a+b+1)与ab的大小,
等价于比较(2a²+1)与(a²+2a)的大小;
即要比较(a²+1)与2a的大小。
∵(a-1)²=a²+1-2a,
∴(a-1)²+2a=a²+1,
∵a>1,∴(a-1)²>1,
∴(a²+1)>2a。
由此上推即证明有
(a²b²+b²c²+c²a²)/(a+b+c)>abc。于是,
(a²b²+b²c²+c²a²)/(a+b+c)≥abc
证毕。
(a+b+c)²=a²+b²+c²+2ab+2bc+2ca
若a=b=c,则(a²b²+b²c²+c²a²)/(a+b+c)=abc
命题成立,
当a,b,c不相等时,不妨设
(a,b)>c=1,则
(a²b²+b²c²+c²a²)/(a+b+c)=(a²b²+b²+a²)/(a+b+1)
abc= ab,
比较(a²b²+b²+a²)/(a+b+1)与ab的大小,
若a>b时,不妨设b=1,则
(a²b²+b²+a²)/(a+b+1)=(2a²+1)/(a+2),
ab=a,
比较(a²b²+b²+a²)/(a+b+1)与ab的大小,
等价于比较(2a²+1)与(a²+2a)的大小;
即要比较(a²+1)与2a的大小。
∵(a-1)²=a²+1-2a,
∴(a-1)²+2a=a²+1,
∵a>1,∴(a-1)²>1,
∴(a²+1)>2a。
由此上推即证明有
(a²b²+b²c²+c²a²)/(a+b+c)>abc。于是,
(a²b²+b²c²+c²a²)/(a+b+c)≥abc
证毕。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
a²b²+b²c²+c²a²)≥(a+b+c)abc=a²bc+ab²c+abc²,再证2(a²b²+b²c²+c²a²)≥2(a²bc+ab²c+abc²
再证2(a²b²+b²c²+c²a²)=a²(b²+c²)+b²(a²+c²)+c²(a²+b²)
≥a²(2bc)+b²(2ac)+c²(2ab)。原式成立
再证2(a²b²+b²c²+c²a²)=a²(b²+c²)+b²(a²+c²)+c²(a²+b²)
≥a²(2bc)+b²(2ac)+c²(2ab)。原式成立
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询