
已知多项式(x3+px+q)(x-3x+2)的结果中不含x3和x2,求p和q的值
1个回答
展开全部
∵(x2+px+q)(x2-3x+2)
=x4-3x3+2x2+px3-3px2+2px+qx2-3qx+2q
=x4+(p-3)x3+(q-3p+2)x2+(2p-3q)x+2q.
∵乘积中不含x2与x3项,
∴p-3=0,q-3p+2=0,
∴p=3,q=7.
=x4-3x3+2x2+px3-3px2+2px+qx2-3qx+2q
=x4+(p-3)x3+(q-3p+2)x2+(2p-3q)x+2q.
∵乘积中不含x2与x3项,
∴p-3=0,q-3p+2=0,
∴p=3,q=7.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询