已知数列{an}是首项a1=1的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且把S2=16,b1b3=b4
已知数列{an}是首项a1=1的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且把S2=16,b1b3=b4.(1)求数列{an}和数列{bn}的通项...
已知数列{an}是首项a1=1的等差数列,其前n项和为Sn,数列{bn}是首项b1=2的等比数列,且把S2=16,b1b3=b4.(1)求数列{an}和数列{bn}的通项公式.(2)令c1=1,c2k=a2k-1,c2k+1=a2k+kbk,其中k=1,2,3,…,求数列{cn}的前2n+1项和T2n+1.
展开
1个回答
展开全部
(1)设数列{an}的公差为d,数列{bn}的公比为q,
则an=1+(n-1)d,bn=2qn?1,
由b1b3=b4,得q=
=b1=2,
∴an=2n-1,bn=2n.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2?b2)+…+a2n-1+(a2n+nbn)
=1+S2n+(b1+2b2+…+nbn),
令A=b1+2b2+…+nbn,
则A=2+2?22+…+n?2n,
2A=22+2?23+…+(n-1)?2n+n?2n+1,
∴-A=2+22+…+2n-n?2n+1,
∴A=?
+n?2n+1?2n+1+2,
∵S2n=
=4n2,
∴T2n+1=1+4n2+n?2n+1?2n+1+2
=3+4n2+(n-1)?2n+1.
则an=1+(n-1)d,bn=2qn?1,
由b1b3=b4,得q=
b4 |
b3 |
∴an=2n-1,bn=2n.
(2)T2n+1=c1+a1+(a2+b1)+a3+(a4+2?b2)+…+a2n-1+(a2n+nbn)
=1+S2n+(b1+2b2+…+nbn),
令A=b1+2b2+…+nbn,
则A=2+2?22+…+n?2n,
2A=22+2?23+…+(n-1)?2n+n?2n+1,
∴-A=2+22+…+2n-n?2n+1,
∴A=?
2(1?2n) |
1?2 |
∵S2n=
2n(1+a2n) |
2 |
∴T2n+1=1+4n2+n?2n+1?2n+1+2
=3+4n2+(n-1)?2n+1.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询