如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0

如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位... 如图,已知平面直角坐标系中,菱形ABCD的顶点分别在x轴、y轴上,其中C,D两点的坐标分别为(4,0),(0,-3).两动点P、Q分别从A、C同时出发,点P以每秒1个单位的速度沿线段AB向终点B运动,点Q以每秒2个单位的速度沿折线CDA向终点A运动,设运动时间为x秒.(1)求菱形ABCD的高h和面积s的值;(2)当Q在CD边上运动,x为何值时直线PQ将菱形ABCD的面积分成1:2两部分;(3)设四边形APCQ的面积为y,求y关于x的函数关系式(要写出x的取值范围);在P、Q运动的整个过程中是否存在y的最大值?若存在,求出这个最大值,并指出此时P、Q的位置;若不存在,请说明理由. 展开
 我来答
爱刷dJL31WA54
推荐于2016-04-14 · TA获得超过165个赞
知道答主
回答量:193
采纳率:0%
帮助的人:125万
展开全部
解答:解:(1)如图1,过B点作BH⊥CD,垂足为H,
∵四边形ABCD为菱形,
∴OB=OD=3,OA=OC=4,
在Rt△COD中,CD=
OC2+OD2
=5,
∴S菱形ABCD=4S△COD=4×
1
2
×4×3=24,
又∵S菱形ABCD=CD×BH,即5h=24,解得h=
24
5


(2)依题意,得AP=x,DQ=5-2x,则S梯形APQD=
1
2
(x+5-2x)×
24
5
=
12
5
(5-x),
当S梯形APQD=
1
3
S菱形ABCD时,
12
5
(5-x)=8,解得x=
5
3

当S梯形APQD=
2
3
S菱形ABCD时,
12
5
(5-x)=16,解得x=-
5
3
(舍去);

(3)存在.
当点Q在CD上时,如图2,依题意,得AP=x,CQ=2x,
∴y=
1
2
(x+2x)×
24
5
=
36
5
x(0≤x≤
5
2
),
当x=
5
2
时,y有最大值,最大值为
36
5
×
5
2
=18,⊙
此时P点在线段AB的中点,Q点与D点重合;
当点Q在AD上时,如图3,
y=
1
2
(x+10-2x)×
24
5
=24-
12
5
x(
5
2
<x<5),
y无最大值.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式