已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三

已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为()A.B.C.D.... 已知第一个三角形的周长为1,它的三条中位线组成第二个三角形,第二个三角形的三条中位线又组成第三个三角形,以此类推,则第2003个三角形的周长为( ) A. B. C. D. 展开
 我来答
蓝珮从哪里来85
推荐于2016-04-19 · TA获得超过260个赞
知道答主
回答量:127
采纳率:0%
帮助的人:170万
展开全部
C

根据三角形的中位线定理,第一个三角形的周长为1,推导出第二个三角形的周长为 ,第三个三角形的周长为 ,然后由前几个三角形的周长,寻找周长之间的规律.
解:由于三角形的中位线平行于第三边并且等于它的一半,三条中位线组成的三角形的周长是原三角形的周长的一半,以此类推,第2003个三角形的周长为( × × ×…× )[2002个]=
故选C.
本题考查了三角形中位线的性质,比较简单,但在解答时要查找规律.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式