如图,⊙M的圆心M在x轴上,⊙M分别交x轴于点A、B(A在B的左边),交y轴的正半轴于点C,弦CD∥x轴交⊙M于

如图,⊙M的圆心M在x轴上,⊙M分别交x轴于点A、B(A在B的左边),交y轴的正半轴于点C,弦CD∥x轴交⊙M于点D,已知A、B两点的横坐标分别是方程x2=4(x+3)的... 如图,⊙M的圆心M在x轴上,⊙M分别交x轴于点A、B(A在B的左边),交y轴的正半轴于点C,弦CD∥x轴交⊙M于点D,已知A、B两点的横坐标分别是方程x2=4(x+3)的两个根,(1)求点C的坐标;(2)求直线AD的解析式;(3)点N是直线AD上的一个动点,求△MNB周长的最小值,并在图中画出△MNB周长最小时点N的位置. 展开
 我来答
红颜明月笑颜开2459
2014-08-31 · TA获得超过150个赞
知道答主
回答量:122
采纳率:33%
帮助的人:61.5万
展开全部
(1)方程x2=4(x+3)整理得,
x2-4x-12=0,
即(x+2)(x-6)=0,
∴x+2=0,x-6=0,
解得x=-2,或x=6,
∴点A、B的坐标分别为:A(-2,0),B(6,0),
(-2+6)÷2=2,[6-(-2)]÷2=4,
∴点M的坐标是(2,0),⊙M的半径是4,
连接CM,则OC=
CM2?OM2
=
42?22
=2
3

∴点C的坐标是(0,2
3
);

(2)如图1,过点M作ME⊥CD,
则CE=ED=
1
2
CD,
∵CD∥x轴,
∴ME⊥x轴,
∴四边形OMEC是矩形,
∴CE=OM=2,
∴CD=4,
点D的坐标是(4,2
3
),
设直线AD的解析式是y=kx+b,
?2k+b=0
4k+b=2
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消