已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=-16x

已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=-16x2+bx+c的图象经过点A、B.点P(t,0)是x轴上... 已知正方形OABC中,O为坐标原点,点A在y轴的正半轴上,点C在x轴的正半轴上,点B(4,4).二次函数y=-16x2+bx+c的图象经过点A、B.点P(t,0)是x轴上一动点,连接AP.(1)求此二次函数的解析式;(2)如图①,过点P作AP的垂线与线段BC交于点G,当点P在线段OC(点P不与点C、O重合)上运动至何处时,线段GC的长有最大值,求出这个最大值;(3)如图②,过点O作AP的垂线与直线BC交于点D,二次函数y=-16x2+bx+c的图象上是否存在点Q,使得以P、C、Q、D为顶点的四边形是以PC为边的平行四边形?若存在,求出t的值;若不存在,请说明理由. 展开
 我来答
危乐音7F
推荐于2017-12-15 · TA获得超过160个赞
知道答主
回答量:126
采纳率:83%
帮助的人:55.3万
展开全部
(1)∵B(4,4),
∴AB=BC=4,
∵四边形ABCD是正方形,
∴OA=4,
∴A(0,4),
将点A(0,4),B(4,4)代入y=-
1
6
x2+bx+c得
c=4
-
1
6
×16+4b+c=4

解得
b=
2
3
c=4

∴二次函数解析式为y=-
1
6
x2+
2
3
x+4;

(2)∵P(t,0),
∴OP=t,PC=4-t,
∵AP⊥PG,
∴∠APO+∠CPG=180°-90°=90°,
∵∠OAP+∠APO=90°,
∴∠OAP=∠CPG,
又∵∠AOP=∠PCG=90°,
∴△AOP∽△PCG,
AO
PC
=
OP
GC

4
t
=
4-t
GC

整理得,GC=-
1
4
(t-2)2+1,
∴当t=2时,GC有最大值是1,
即P(2,0)时,GC的最大值是1;

(3)存在点Q,使得以P、C、Q、DP、C、Q、DP、C、Q、D为顶点的四边形是以PC为边的平行四边形.
理由如下:如图1、2,易得∠OAP=∠COD,
在△AOP和△OCD中,
∠OAP=∠COD
OA=OC
∠AOP=∠OCD=90°

∴△AOP≌△OCD(ASA),
∴OP=CD,
由P、C、Q、DP、C、Q、DP、C、Q、D为顶点的四边形是以PC为边的平行四边形得,PC∥DQ且PC=DQ,
∵P(t,0),D(4,t),
∴PC=DQ=|t-4|,
∴点Q的坐标为(t,t)或(8-t,t),
①当Q(t,t)时,-
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式