对于i=1,2,3,…,n,都有|xi|<1,且|x1|+|x2|+…|xn|=19+|x1+x2+…+xn|成立,则正整数n的最小值为___

对于i=1,2,3,…,n,都有|xi|<1,且|x1|+|x2|+…|xn|=19+|x1+x2+…+xn|成立,则正整数n的最小值为______.... 对于i=1,2,3,…,n,都有|xi|<1,且|x1|+|x2|+…|xn|=19+|x1+x2+…+xn|成立,则正整数n的最小值为______. 展开
 我来答
天殇h67
2014-12-12 · TA获得超过114个赞
知道答主
回答量:115
采纳率:0%
帮助的人:159万
展开全部
∵|xi|<1,
∴n=n|1|>|x1|+|x2|+…|xn|=19+|x1+x2+…xn|>19,
所以n≥20,
故正整数n的最小值为20,
故答案为:20.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式