点A、B、C、D在同一球的球面上,AB=BC=2,AC=2,若四面体ABCD体积的最大值为23,则这个球的表面积为254π

点A、B、C、D在同一球的球面上,AB=BC=2,AC=2,若四面体ABCD体积的最大值为23,则这个球的表面积为254π254π.... 点A、B、C、D在同一球的球面上,AB=BC=2,AC=2,若四面体ABCD体积的最大值为23,则这个球的表面积为254π254π. 展开
 我来答
知足189
推荐于2016-02-02 · 超过65用户采纳过TA的回答
知道答主
回答量:107
采纳率:0%
帮助的人:121万
展开全部
解答:解:根据题意知,△ABC是一个直角三角形,其面积为1.其所在球的小圆的圆心在斜边AC的中点上,设小圆的圆心为Q,
若四面体ABCD的体积的最大值,由于底面积S△ABC不变,高最大时体积最大,
所以,DQ与面ABC垂直时体积最大,最大值为
1
3
S△ABC×DQ=
2
3

1
3
×1×DQ=
2
3
,∴DQ=2,如图.
设球心为O,半径为R,则在直角△AQO中,
OA2=AQ2+OQ2,即R2=12+(2-R)2,∴R=
5
4

则这个球的表面积为:S=4π(
5
4
2=
25
4
π

故答案为:
25
4
π
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式