如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(3,1),点D是AB边上一个动点(与点A不重合
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(3,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.(1)若点P在...
如图,矩形OABC的边OC,OA分别与x轴,y轴重合,点B的坐标是(3,1),点D是AB边上一个动点(与点A不重合),沿OD将△OAD翻折,点A落在点P处.(1)若点P在一次函数y=2x-1的图象上,求点P的坐标;(2)若点P在抛物线y=ax2图象上,并满足△PCB是等腰三角形,求该抛物线解析式;(3)当线段OD与PC所在直线垂直时,在PC所在直线上作出一点M,使DM+BM最小,并求出这个最小值.
展开
1个回答
展开全部
解答:解:(1)∵B(
,1)
∴BC=OA=OP=1,OC=
.
∵点P在一次函数y=2x-1的图象上
∴设P(x,2x-1)
如图,过P作PH⊥x轴于H
在Rt△OPH中,PH=2x-1,OH=x,OP=1
∴x2+(2x-1)2=1
解得:x1=
,x2=0(不合题意,舍去)
∴P(
,
)(2分)
(2)连接PB,PC
①若PB=PC,则P在BC中垂线y=
上
∴设P(x,
),如图,过P作PH⊥x轴于H
在Rt△OPH中,PH=
,OH=x,OP=1
∴x2+
=1
解得:x1=
,x2=-
(不合题意,舍去)
∴P(
,
)
∴
=a×
,
得a=
∴y=
x2(2分)
②若BP=BC,则BP=1,连接OB
∵OP=1
∴OP+PB=2
∵在Rt△OBC中,∠OCB=90°,OB=
=2
∴OP+PB=OB
∴O,P,B三点共线,P为线段OB中点.
又∵B(
,1)
∴P(
,
)
∴
=a×
,
解得:a=
∴y=
x2
③若CP=CB,则CP=1
∵OP=1
∴PO=PC,则P在OC中垂线x=
上
∴设P(
,y).
过P作PH⊥x轴于H,在Rt△OPH中,PH=|y|,OH=
,OP=1
∴y2+
=1
解得:y1=
,y2=-
∴P(
,
)或(
,-
)
当点P(
,-
)时,∠AOP=120°,此时∠AOD=60°,点D与点B重合,符合题意.
若点P(
,
),则
=a×
3 |
∴BC=OA=OP=1,OC=
3 |
∵点P在一次函数y=2x-1的图象上
∴设P(x,2x-1)
如图,过P作PH⊥x轴于H
在Rt△OPH中,PH=2x-1,OH=x,OP=1
∴x2+(2x-1)2=1
解得:x1=
4 |
5 |
∴P(
4 |
5 |
3 |
5 |
(2)连接PB,PC
①若PB=PC,则P在BC中垂线y=
1 |
2 |
∴设P(x,
1 |
2 |
在Rt△OPH中,PH=
1 |
2 |
∴x2+
1 |
4 |
解得:x1=
| ||
2 |
| ||
2 |
∴P(
| ||
2 |
1 |
2 |
∴
1 |
2 |
3 |
4 |
得a=
2 |
3 |
∴y=
2 |
3 |
②若BP=BC,则BP=1,连接OB
∵OP=1
∴OP+PB=2
∵在Rt△OBC中,∠OCB=90°,OB=
3+1 |
∴OP+PB=OB
∴O,P,B三点共线,P为线段OB中点.
又∵B(
3 |
∴P(
| ||
2 |
1 |
2 |
∴
1 |
2 |
3 |
4 |
解得:a=
2 |
3 |
∴y=
2 |
3 |
③若CP=CB,则CP=1
∵OP=1
∴PO=PC,则P在OC中垂线x=
| ||
2 |
∴设P(
| ||
2 |
过P作PH⊥x轴于H,在Rt△OPH中,PH=|y|,OH=
| ||
2 |
∴y2+
3 |
4 |
解得:y1=
1 |
2 |
1 |
2 |
∴P(
| ||
2 |
1 |
2 |
| ||
2 |
1 |
2 |
当点P(
| ||
2 |
1 |
2 |
若点P(
| ||
2 |
1 |
2 |
1 |
2 |