1个回答
展开全部
这题好贱……
证题的步骤基本为:
任意给定ε>0,要使|f(x)-A|<ε,(通过解这个不等式,使不等式变为δ1(ε)<x-x0<δ2(ε)为了方便,可让ε值适当减少),取不等式两端的绝对值较小者为δ(ε),于是
对于任意给定的ε>0,都找到δ>0,使当0<|x-x0|<δ时,有|f(x)-A|<ε . 即当x趋近于x0时,函数f(x)有极限A
例如证明f(x)=lnx在x趋于e时,有极限1
证明:任意给定ε>0,要使|lnx-1|<ε,只须-ε<lnx-1<ε,1-ε<lnx<1+ε,e^(1-ε)<x<e^(1+ε), ∴e^(1-ε)-e<x-e<e^(1+ε)-e,取δ(ε)=min(e-e^(1-ε),e^(1+ε)-e)min后面两数是不等式两端的值,但左边的是不等式左端的负值要取绝对值,这两正数取较小的为δ,于是对于任意给定的ε>0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1
说明一下:取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。
证题的步骤基本为:
任意给定ε>0,要使|f(x)-A|<ε,(通过解这个不等式,使不等式变为δ1(ε)<x-x0<δ2(ε)为了方便,可让ε值适当减少),取不等式两端的绝对值较小者为δ(ε),于是
对于任意给定的ε>0,都找到δ>0,使当0<|x-x0|<δ时,有|f(x)-A|<ε . 即当x趋近于x0时,函数f(x)有极限A
例如证明f(x)=lnx在x趋于e时,有极限1
证明:任意给定ε>0,要使|lnx-1|<ε,只须-ε<lnx-1<ε,1-ε<lnx<1+ε,e^(1-ε)<x<e^(1+ε), ∴e^(1-ε)-e<x-e<e^(1+ε)-e,取δ(ε)=min(e-e^(1-ε),e^(1+ε)-e)min后面两数是不等式两端的值,但左边的是不等式左端的负值要取绝对值,这两正数取较小的为δ,于是对于任意给定的ε>0,都能找到δ>0,使当0<|x-e|<δ时,有|f(x)-1|<ε . 即当x趋近于e时,函数f(x)有极限1
说明一下:取0<|x-e|,是不需要考虑点x=e时的函数值,它可以存在也可不存在,可为A也可不为A。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询