展开全部
显然m≠0, f(mx)=mx-1/mx
=>f(mx)+mf(x)=mx-1/mx+m-m/x<0
=>2mx<(1+m^2)/m
①m>0时 x<(1+m^2)/m^2 不能满足,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,故舍去
②m<0时,x>(1+m^2)/m^2 要是不等式成立(1+m^2)/m^2 <1,解得m<-1
解法2:f(mx)+mf(x)=(2*m^2*x^2-m^2-1)/mx 小于0 在x属于1到正无限 恒成立
Δ=8m^2(m^2+1)一定是大于0 的
当m大于0 时候 (2*m^2*x^2-m^2-1)/mx小于0 那么 分子要小于0.
分子是开口朝上的二次函数 并且对称轴在Y轴而且有2个根。
所以他在【1.正无穷)不可能恒小于0
当m小于0的时候 那么要分子大于0
很容易可以知道当分子这个函数x=1的时候大于0时候等式一定成立
。。。。。也就是m^2大于1 m大于1(舍) or m小于负1
综上所述 m小于-1
=>f(mx)+mf(x)=mx-1/mx+m-m/x<0
=>2mx<(1+m^2)/m
①m>0时 x<(1+m^2)/m^2 不能满足,对任意x∈[1,∞),f(mx)+mf(x)<0恒成立,故舍去
②m<0时,x>(1+m^2)/m^2 要是不等式成立(1+m^2)/m^2 <1,解得m<-1
解法2:f(mx)+mf(x)=(2*m^2*x^2-m^2-1)/mx 小于0 在x属于1到正无限 恒成立
Δ=8m^2(m^2+1)一定是大于0 的
当m大于0 时候 (2*m^2*x^2-m^2-1)/mx小于0 那么 分子要小于0.
分子是开口朝上的二次函数 并且对称轴在Y轴而且有2个根。
所以他在【1.正无穷)不可能恒小于0
当m小于0的时候 那么要分子大于0
很容易可以知道当分子这个函数x=1的时候大于0时候等式一定成立
。。。。。也就是m^2大于1 m大于1(舍) or m小于负1
综上所述 m小于-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询