如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD.(1)证明:PA⊥BD
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB...
如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD=2,PD⊥底面ABCD.(1)证明:PA⊥BD;(2)若PD=AD,求二面角A-PB-C的余弦值.
展开
1个回答
展开全部
(1)证明:因为∠DAB=60°,AB=2AD=2,
由余弦定理得BD=
AD=
从而BD2+AD2=AB2,故BD⊥AD
又PD⊥底面ABCD,BD?底面ABCD,∴BD⊥PD
∵AD∩PD=D
∴BD⊥平面PAD
∵PA?平面PAD
∴PA⊥BD (6分)
(2)解:如图,以D为坐标原点,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,
,0),C(?1,
,0),P(0,0,1).
∴
=(?1,
,0),
=(0,
,?1),
由余弦定理得BD=
3 |
3 |
从而BD2+AD2=AB2,故BD⊥AD
又PD⊥底面ABCD,BD?底面ABCD,∴BD⊥PD
∵AD∩PD=D
∴BD⊥平面PAD
∵PA?平面PAD
∴PA⊥BD (6分)
(2)解:如图,以D为坐标原点,射线DA为x轴的正半轴建立空间直角坐标系D-xyz,则A(1,0,0),B(0,
3 |
3 |
∴
AB |
3 |
PB |
3 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
为你推荐:下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
类别
我们会通过消息、邮箱等方式尽快将举报结果通知您。 说明 0/200 提交
取消
|