(本小题满分14分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB

(本小题满分14分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB于F。现将△ACD沿CD折起,折成二面角A—C... (本小题满分14分)如图,在Rt△ABC中,∠ACB=90°,∠B=30°,D,E分别为AB,CD的中点,AE的延长线交CB于F。现将△ACD沿CD折起, 折成二面角A—CD—B,连接AF。 (I)求证:平面AEF⊥平面CBD;(II)当AC⊥BD时,求二面角A—CD—B大小的余弦值 展开
 我来答
伴魂哥
2015-01-02 · TA获得超过654个赞
知道答主
回答量:190
采纳率:0%
帮助的人:135万
展开全部

(I)证明略
(II)

(I)证明:在

又E是CD的中点,得AF⊥CD。   …………3分
折起后,AE⊥CD,EF⊥CD,
又AE∩EF=E,AE平面AED,EF平面AEF,
故CD⊥平面AEF,   …………6分
又CD平面CDB,
故平面AEF⊥平面CBD。  …………7分
(II)方法一:
解:过点A作AH⊥EF,垂足H落在FE的延长线上。

∵CD⊥平面AEF,所以CD⊥AH,
∴AH⊥平面CBD。…………8分
以E为原点,EF所在直线为x轴,ED所在直线为y轴,
过E与AH平行的直线为z轴建立如图空间直角坐标系数。…………9分
由(I)可知∠AEF即为所求二面角的平面角,
设为 ,并设AC=a,可得

…………11分

  …………13分
故二项角A—CD—B大小的余弦值为 …………14分
方法二:
解:过点A作AH⊥EF,垂足H落在FE的延长线,

∵CD⊥平面AEF,所以CD⊥AH,
∴AH⊥平面CBD。 …………9分
连接CH并延长交BD的延长线于G,
由已知AC⊥BD,得CH⊥BD,
即∠CGB=90°,
因此△CEH∽△CGD,


 …………12分
又∵AE⊥CD,EF⊥CD,
∴∠AEF即为所求二面角的平面角,…………13分
故二项角A—CD—B大小的余弦值为 …………14分
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式