1个回答
展开全部
f(x)=a- [1/(2^x-1)]
f(1)=a-[1/(2-1)]=a-1
f(-1)=a-[1/(1/2-1)]=a+2
f(1)+f(-1)=0
a-1+a+2=0
a=- 1/2
f(x)=-(1/2)-[1/(2^x-1)]= - [(1/2)+1/(2^x-1)]
= - [2^x-1+2]/[2(2^x-1)]
=(1/2)[(1+2^x)/(1-2^x)]
2.
要使函数有意义必须:
1-2^x≠0
2^x≠1
x≠0
所以原函数的定义域为;(-∞,0)∪(0,+∞)
值域:
2y=(1+2^x)/(1-2^x)
1+2^x=(2y)-(2y)2^x
(2y+1)2^x=(2y-1)
2^x=(2y-1)/(2y+1)>0
(2y-1)(2y+1)>0
y>1/2,或y<-1/2
原函数的值域为:
(-∞,-1/2)∪(1/2,+∞)
2y=(1-2^x)/(1+2^x)=[2-(1+2^x)]/(1+2^x)=[2/(1+2^x)]-1
y=[1/(1+2^x)]-(1/2)
函数1+2^x是增函数,
函数[1/(1+2^x)]是减函数;
函数y=[1/(1+2^x)]-(1/2)是减函数;
f(1)=a-[1/(2-1)]=a-1
f(-1)=a-[1/(1/2-1)]=a+2
f(1)+f(-1)=0
a-1+a+2=0
a=- 1/2
f(x)=-(1/2)-[1/(2^x-1)]= - [(1/2)+1/(2^x-1)]
= - [2^x-1+2]/[2(2^x-1)]
=(1/2)[(1+2^x)/(1-2^x)]
2.
要使函数有意义必须:
1-2^x≠0
2^x≠1
x≠0
所以原函数的定义域为;(-∞,0)∪(0,+∞)
值域:
2y=(1+2^x)/(1-2^x)
1+2^x=(2y)-(2y)2^x
(2y+1)2^x=(2y-1)
2^x=(2y-1)/(2y+1)>0
(2y-1)(2y+1)>0
y>1/2,或y<-1/2
原函数的值域为:
(-∞,-1/2)∪(1/2,+∞)
2y=(1-2^x)/(1+2^x)=[2-(1+2^x)]/(1+2^x)=[2/(1+2^x)]-1
y=[1/(1+2^x)]-(1/2)
函数1+2^x是增函数,
函数[1/(1+2^x)]是减函数;
函数y=[1/(1+2^x)]-(1/2)是减函数;
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询