已知关于x的二次函数f(x)=-x²-ax+b(x∈[-1,1])的最小值是-1,最大值是1,求a,b的值

神叶魔盛
2012-07-26 · TA获得超过1519个赞
知道小有建树答主
回答量:85
采纳率:88%
帮助的人:59.7万
展开全部
此题需分类讨论,过程颇为复杂。
最值在哪一点取得是解题的关键,而最值的取得和对称轴的位置有关。
因此题目分类讨论的基准就是对称轴和区间[-1,1]的位置关系。
二次函数开口向下,因此对称轴的左边是递增的,右边是递减的。

一、当对称轴x=-a/2∈[-1,1]时
【1】当a>0时,那么对称轴-a/2<0,那么讨论进一步细化:
对称轴在[-1,0)之间,a∈(0,2]
最大值f(-a/2)=(a²/4)+b=1
最小值f(1)=-1-a+b=-1
联立:a^2+4a-4=0
b=-2+2√2,a=-2+2√2满足a∈(0,2]

【2】当a<0时,那么对称轴-a/2>0,那么讨论再进一步细化:
对称轴在(0,1]之间,a∈[-2,0)
最大值f(-a/2)=(a²/4)+b=1
最小值f(-1)=-1+a+b=-1
联立:a^2-4a-4=0
b=-2+2√2,a=2-2√2满足a∈[-2,0)

【3】当a=0时,那么对称轴为x=0:
最大值f(0)=(0)+b=1,b=1
最小值f(±1)=-1+b=-1,b=0
b=0与b=1矛盾
故a=0,b=-1不满足题意

二、当对称轴x=-a/2在[-1,1]的左边时
【1】对称轴在[-1,1]的左边,a≥2
则最大值f(-1)=-1+a+b=1
最小值f(1)=-1-a+b=-1
联立:b=1,a=1与a≥2矛盾。

三、当对称轴x=-a/2在[-1,1]的右边时
【1】对称轴在[-1,1]的右边,a≤-2
则最大值f(1)=-1-a+b=1
最小值f(-1)=-1+a+b=-1
联立:b=1,a=-1,与a≤-2矛盾。

综上:满足题意的有:
①b=-2+2√2,a=-2+2√2
②b=-2+2√2,a=2-2√2
栗季0DT
2012-07-26 · TA获得超过7024个赞
知道大有可为答主
回答量:2178
采纳率:50%
帮助的人:1541万
展开全部
当a<-2时f(x)min=f(-1)=a+b-1=-1,f(x)max=f(1)=b-a-1=1
由此可得a=-1,b=1,不符合题意故舍去
当-2≤a<0时f(x)min=f(-1)=a+b-1=-1,f(x)max=f(-a/2)=0.24a²+b
由此可得a1=2+2√2,b2=-2√2-2(不符合题意故舍去) a2=2-2√2,b2=2√2-2 此解合适
当0≤a≤2时f(x)min=f(1)=b-a-1=-1,f(x)max=f(-a/2)=0.24a²+b
由此可得a1=-2-2√2,b2=-2√2-2(不符合题意故舍去) a2=2√2-2,b2=2√2-2 此解合适
当a>2时f(x)min=f(1)=b-a-1=-1,f(x)max=f(-1)=a+b-1=1
由此可得a=1,b=1,不符合题意故舍去
综上所述a=2-2√2,b=2√2-2或a=2√2-2,b=2√2-2
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
来秋梵暄vX
2012-07-26 · TA获得超过146个赞
知道小有建树答主
回答量:108
采纳率:0%
帮助的人:82.7万
展开全部
解:
y=-x^2-ax+b 对称轴x=-b/2a=-a/2

①:
当-a/2≤-1时 ,a≥2
此时 f(-1)max=1 , f(1)min=-1
解之得:a= 1 , b=1
但a要≥2 ∴不符

②:
当-a/2≥1时 ,a≤-2
此时 f(1)max=1 , f(-1)=-1
解之得: a=-1 , b=1
但a要≤-2 ∴不符

③:
当 -1≤-a/2≤0时 , 0≤a≤2
此时,f(-a/2)max=1 , f(1)min=-1
解之得:a= b=2+2SQR(2) SQR为根号

④ 0<-a/2≤1时 , -2≤ a≤0
此时,f(-a/2)max=1 , f(-1)=-1
解之得:a=b=2 不符

综上 a=2+2SQR(2)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
yuejiong163
2012-07-26 · TA获得超过206个赞
知道小有建树答主
回答量:178
采纳率:0%
帮助的人:173万
展开全部
f(x)'= -2x-a 令f(x)'=0解得x=-a/2
当-a/2∈[-1,1],知在x=-a/2取最大值(因为函数开口向下)
所以最大值为f(-a/2))=a²/4+b=1
最小值为f(1)或f(-1)
f(1)=-1-a+b=-1 为最小时,联立解得a=b=2√2-2 (这里要知道-a/2<0,要舍去-2√2-2 这个解)
f(-1)=………………得a=-b=-2√2+2(这里要知道-a/2>0,要舍去2√2+2 这个解)
当-a/2∈[-无穷,-1]或[1,+无穷]时
f(1)与f(-1)一个为最大一个为最小值
当f(1)最大f(-1)最小时
-1+a+b=-1,-1-a+b=1,有a=-1,b=1(与假设矛盾舍去)
当f(1)最小f(-1)最大时
-1+a+b=1,-1-a+b=-1,有a=1,b=1(与假设矛盾舍去)
综上
a=2√2-2 b=2√2-2
a=-2√2+2 b=2√2-2
题中没有给出具体的限制,这几种结果都要考虑
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Favorss
2012-07-26 · 超过23用户采纳过TA的回答
知道答主
回答量:67
采纳率:0%
帮助的人:55.4万
展开全部
f(x)= -x²-ax-a²+a²+b = -(x+a)² + a²+b
假设a∉[-1,1], 可以验证这样的a是不存在的;
所以a∈[-1,1]
当x=-a,可取到最大值a²+b=1;
当a>0, x=1时取最小值;当a<0,x=-1时取最小值; a分别是√2-1, 1-√2
两种情况下b都是2√2-2

2L答案是错的,取x=1/2即可验证a=-1,b=1是不符合的
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(8)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式