利用三重积分求曲面z=√(x^2+y^2)及z=x^2+y^2围成的空间闭区域的体积。

207hys
2012-07-26 · TA获得超过3231个赞
知道大有可为答主
回答量:1164
采纳率:83%
帮助的人:453万
展开全部
所求体积可以看成是两个体积之差:一个体积是曲面z=√(x^2+y^2)、z=0、x^2+y^2=1围成;一个体积由z=x^2+y^2、z=0、x^2+y^2=1围成。设第一个体积为V1,第二个体积为V2,所求体积为V,则V=V1-V2。 V1=∫∫∫(Ω1)dV;V2=∫∫∫(Ω2)dV;采用柱坐标:x=rcosθ,y=rsinθ,z=z, dV=rdrdθdz,曲面z=√(x^2+y^2)变为z=r,曲面z=x^2+y^2变为z=r^2;所以 V1=∫(0→1)rdr∫(0→2π)dθ∫(0→r)dz =∫(0→1)rdr∫(0→2π)dθ(r) =∫(0→1)r^2dr(2π) =2π/3; V2=∫(0→1)rdr∫(0→2π)dθ∫(0→r^2)dz =∫(0→1)r^3dr(2π) =π/2; 所以V=V1-V2=π/6(毕)。
nsjiang1
2012-07-27 · TA获得超过1.3万个赞
知道大有可为答主
回答量:8735
采纳率:94%
帮助的人:3858万
展开全部
用柱面坐标。投影为x^2+y^2<=1. V=∫∫(r-r^2)rdrdt=2pai*(1/3-1/4)=pai/6
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式