已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).(1)求f(1),f(-1
已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).(1)求f(1),f(-1)的值;(2)求证:y=f(x)为偶函数;(3...
已知函数y=f(x)(x≠0)对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y).(1)求f(1),f(-1)的值;(2)求证:y=f(x)为偶函数;(3)若y=f(x)在(0,+∞)上是增函数,解不等式f(16x)+f(x?5)≤0.
展开
1个回答
展开全部
解答:(1)解:∵对于任意的x,y∈R且x,y≠0满足f(xy)=f(x)+f(y),
∴令x=y=1,得到:f(1)=f(1)+f(1),
∴f(1)=0,
令x=y=-1,得到:f(1)=f(-1)+f(-1),
∴f(-1)=0;
(2)证明:由题意可知,令y=-1,得f(-x)=f(x)+f(-1),
∵f(-1)=0,∴f(-x)=f(x),
∴y=f(x)为偶函数;
(3)解:由(2)函数f(x)是定义在非零实数集上的偶函数.
∴不等式f(
x)+f(x?5)≤0可化为f[
x(x?5)]≤f(1),f(|
x(x?5)|)≤f(1),
∴?1≤
x(x?5)≤1,即:-6≤x(x-5)≤6且x≠0,x-5≠0,
在坐标系内,如图函数y=x(x-5)图象与y=6,y=-6两直线.
由图可得x∈[-1,0)∪(0,2]∪[3,5)∪(5,6],
故不等式的解集为:[-1,0)∪(0,2]∪[3,5)∪(5,6].
∴令x=y=1,得到:f(1)=f(1)+f(1),
∴f(1)=0,
令x=y=-1,得到:f(1)=f(-1)+f(-1),
∴f(-1)=0;
(2)证明:由题意可知,令y=-1,得f(-x)=f(x)+f(-1),
∵f(-1)=0,∴f(-x)=f(x),
∴y=f(x)为偶函数;
(3)解:由(2)函数f(x)是定义在非零实数集上的偶函数.
∴不等式f(
1 |
6 |
1 |
6 |
1 |
6 |
∴?1≤
1 |
6 |
在坐标系内,如图函数y=x(x-5)图象与y=6,y=-6两直线.
由图可得x∈[-1,0)∪(0,2]∪[3,5)∪(5,6],
故不等式的解集为:[-1,0)∪(0,2]∪[3,5)∪(5,6].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询