在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC. (Ⅰ)求证:PA⊥平面PBC;...
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.(Ⅰ)求证:PA⊥平面PBC;(Ⅱ)求二面角P-AC-B的大小;(麻烦...
在三棱锥P-ABC中,PA=PB,PA⊥PB,AB⊥BC,∠BAC=30°,平面PAB⊥平面ABC.
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;(麻烦写具体步骤谢了) 展开
(Ⅰ)求证:PA⊥平面PBC;
(Ⅱ)求二面角P-AC-B的大小;(麻烦写具体步骤谢了) 展开
1个回答
展开全部
分析粗或闭:(1)证明PA⊥平面PBC,只需证明PA⊥BC,PA⊥PB,利用平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,可得BC⊥平面PAB,结论可证;
(2)作PO⊥AB于点O,OM⊥AC于点M,连接PM,可证∠PMO是二面角P-AC-B的平面角,从而可求二面角P-AC--B的一个三角函数值.
解答:
(1)证明:
∵平面PAB⊥平团拍面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,
∴BC⊥平面PAB,
∵PA⊂平面PAB,
∴PA⊥BC;
又∵PA⊥PB,PB∩BC=B
∴PA⊥平面PBC
(2)解:作PO⊥AB于点O,OM⊥AC于点M,连接PM,
∵平面PAB⊥平面ABC,
∴PO⊥平面ABC,由三垂线定岩裂理得PM⊥AC,
∴∠PMO是二面角P-AC-B的平面角.
设PA=PB=根号6,
∵PA⊥PB,
∴AB=2根号3PO=BO=AO=根号3
∵OM⊥AM,∠MAO=30°,
∴OM=AOsin30°=AO/2
∴tan∠PMO=PO/OM=AO/OM=2
(2)作PO⊥AB于点O,OM⊥AC于点M,连接PM,可证∠PMO是二面角P-AC-B的平面角,从而可求二面角P-AC--B的一个三角函数值.
解答:
(1)证明:
∵平面PAB⊥平团拍面ABC,平面PAB∩平面ABC=AB,且BC⊥AB,
∴BC⊥平面PAB,
∵PA⊂平面PAB,
∴PA⊥BC;
又∵PA⊥PB,PB∩BC=B
∴PA⊥平面PBC
(2)解:作PO⊥AB于点O,OM⊥AC于点M,连接PM,
∵平面PAB⊥平面ABC,
∴PO⊥平面ABC,由三垂线定岩裂理得PM⊥AC,
∴∠PMO是二面角P-AC-B的平面角.
设PA=PB=根号6,
∵PA⊥PB,
∴AB=2根号3PO=BO=AO=根号3
∵OM⊥AM,∠MAO=30°,
∴OM=AOsin30°=AO/2
∴tan∠PMO=PO/OM=AO/OM=2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询