(2009?龙岩)如图,抛物线y=12x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线

(2009?龙岩)如图,抛物线y=12x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1... (2009?龙岩)如图,抛物线y=12x2+mx+n与x轴交于A、B两点,与y轴交于C点,四边形OBHC为矩形,CH的延长线交抛物线于点D(5,2),连接BC、AD.(1)求C点的坐标及抛物线的解析式;(2)将△BCH绕点B按顺时针旋转90°后再沿x轴对折得到△BEF(点C与点E对应),判断点E是否落在抛物线上,并说明理由;(3)设过点E的直线交AB边于点P,交CD边于点Q.问是否存在点P,使直线PQ分梯形ABCD的面积为1:3两部分?若存在,求出P点坐标;若不存在,请说明理由. 展开
 我来答
布嘎嘎拉LR4
推荐于2016-09-07 · 超过60用户采纳过TA的回答
知道答主
回答量:139
采纳率:75%
帮助的人:52.1万
展开全部
(1)∵四边形OBHC为矩形,
∴CD∥AB,
又D(5,2),
∴C(0,2),OC=2.
n=2
1
2
?52+5?m+n=2

解得
m=?
5
2
n=2

∴抛物线的解析式为:y=
1
2
x2-
5
2
x+2;

(2)点E落在抛物线上.理由如下:
由y=0,得
1
2
x2-
5
2
x+2=0.
解得x1=1,x2=4.
∴A(4,0),B(1,0).
∴OA=4,OB=1.
由矩形性质知:CH=OB=1,BH=OC=2,∠BHC=90°,
由旋转、轴对称性质知:EF=1,BF=2,∠EFB=90°,
∴点E的坐标为(3,-1).
把x=3代入y=
1
2
x2-
5
2
x+2,得y=
1
2
?32-
5
2
?3+2=-1,
∴点E在抛物线上;

(3)存在点P(a,0).记S梯形BCQP=S1,S梯形ADQP=S2,易求S梯形ABCD=8.
当PQ经过点F(3,0)时,易求S1=5,S2=3,
此时S1:S2不符合条件,故a≠3.
设直线PQ的解析式为y=kx+b(k≠0),
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×
  • 个人、企业类侵权投诉
  • 违法有害信息,请在下方选择后提交

类别

  • 色情低俗
  • 涉嫌违法犯罪
  • 时政信息不实
  • 垃圾广告
  • 低质灌水

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消