如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,

如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;... 如图,已知点P是线段AB上一动点(不与端点A,B重合),△APC和△PBD都是等边三角形,连接AD、BC交于点I,并与PC、PD交于点E、F,则有下列结论:①AD=BC;②等边△PEF;③∠CID=120°;④∠ECF=∠EDF,其中正确的有(  )A.1个B.2个C.3个D.4个 展开
 我来答
酷我K9H
2015-02-04 · TA获得超过103个赞
知道答主
回答量:104
采纳率:100%
帮助的人:93.7万
展开全部
∵△APC和△PBD都是等边三角形,
∴AP=PC,PD=PB,∠APC=∠BPD=60°,
∴∠APD=∠BPC=120°,
在△APD与△CPB中,
PD=PB
∠APD=∠BPC
AP=PC

∴△APD≌△CPB(SAS),
∴AD=BC,故①正确;
∵∠APC=∠BPD=60°,
∴∠EPF=60°,
∵△APD≌△CPB,
∴∠PAE=∠PCF,
在△APE与△CPF中,
∠PAE=∠PCF
PA=PC
∠APC=∠CPD

∴△APE≌△CPF(ASA),
∴PE=PF,即△PEF是等边三角形,故②正确;
∵由①可知∠PAD=∠PCB,
∴∠CAE+∠ACP=∠CAP+∠ACP=120°,
∵∠CID是△ACI的外角,
∴∠CID=∠CAE+∠ACP=120°,故③正确;
∵AP≠PD,
∴∠PAE≠∠EDF,由①知,∠PAD=∠ECF,
∴∠ECF≠∠EDF,故④错误.
故选C.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式