如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,
如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42,则EF+CF的长为()A.5B.4...
如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=42,则EF+CF的长为( )A.5B.4C.6D.42
展开
1个回答
展开全部
∵四边形ABCD是平行四边形,
∴AB∥CD,AB=CD=6,AD=BC=9,
∴∠F=∠BAF.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠DAF=∠F,
∴AD=FD=9.
∴CF=9-6=3.
∵AB∥CD,
∴△CEF∽△BEA,
∴
=
=
,
∴
=
,
∴CE=3,
∴BE=6,
∴AB=BE.
∵BG⊥AE,
∴AG=EG.
在Rt△ABG中,由勾股定理,得
AG=2.
∴AE=4.
∴
=
,
∴EF=2.
∴EF+CF=2+3=5.
故选A.
∴AB∥CD,AB=CD=6,AD=BC=9,
∴∠F=∠BAF.
∵AF平分∠BAD,
∴∠BAF=∠DAF.
∴∠DAF=∠F,
∴AD=FD=9.
∴CF=9-6=3.
∵AB∥CD,
∴△CEF∽△BEA,
∴
CF |
AB |
CE |
BE |
EF |
AE |
∴
3 |
6 |
CE |
9?CE |
∴CE=3,
∴BE=6,
∴AB=BE.
∵BG⊥AE,
∴AG=EG.
在Rt△ABG中,由勾股定理,得
AG=2.
∴AE=4.
∴
EF |
4 |
3 |
6 |
∴EF=2.
∴EF+CF=2+3=5.
故选A.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询