线性代数 如何证明 r(A+B)<=r(A,B)<=rA+rB?

前半部分:A+B可被A,B线性表示,所以r(A+B)<=r(A,B)后半部分:r(A,B)<=rA+rB怎么证??... 前半部分:A+B可被A,B线性表示,所以 r(A+B)<=r(A,B)
后半部分:r(A,B)<=rA+rB怎么证??
展开
 我来答
教育小百科达人
2019-04-20 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:465万
展开全部

A的列向量的极大无关组和B的列向量组的极大无关组构成的向量组,为方便称其为向量组C。

(A,B)的列向量组等价于向量组C,故r(A,B)=r(C)

C中一共有r(A)+r( B)个向量,故r(C)<=r(A)+r( B)

故r(A,B)<=r(A)+r( B)

线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间

扩展资料:

在线性代数中,行向量是一个 1×n的矩阵,即矩阵由一个含有n个元素的行所组成即行向量。行向量的转置是一个列向量,反之亦然。所有的行向量的集合形成一个向量空间,它是所有列向量集合的对偶空间。

向量的记法:印刷体记作粗体的字母(如a、b、u、v),书写时在字母顶上加一小箭头“→”。如果给定向量的起点(A)和终点(B),可将向量记作AB(并于顶上加→)。在空间直角坐标系中,也能把向量以数对形式表示,例如Oxy平面中(2,3)是一向量。

参考资料来源:百度百科——列向量

goaha
推荐于2017-10-10 · TA获得超过5360个赞
知道大有可为答主
回答量:1346
采纳率:100%
帮助的人:580万
展开全部
A的列向量的极大无关组和B的列向量组的极大无关组构成的向量组,为方便称其为向量组C。

(A,B)的列向量组等价于向量组C,故r(A,B)=r(C)

C中一共有r(A)+r( B)个向量,故r(C)<=r(A)+r( B)

故r(A,B)<=r(A)+r( B)
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fly追风者98
2020-07-03 · TA获得超过265个赞
知道答主
回答量:124
采纳率:0%
帮助的人:7.2万
展开全部
第二部分证明:
设【αi】(i=1,2,...,r)为A的极大线性无关组,有r个向量;【βj】(j=1,2,...,t)为B的极大线性无关组,有t个向量。由极大线性无关组的性质可知,【αi】与A等价,【βj】与B等价。且R(A)=R(αi)=r,R(B)=R(βj)=t。
现在有矩阵(A,B),其秩为矩阵的极大线性无关组的向量个数。而由前面的分析可知,如果【αi】与【βj】线性无关,(A,B)的极大线性无关组为【αi,βj】,R(A,B)=r+t。若【αi】也【βj】线性相关,则【αi,βj】的向量数肯定小于r+t,即R(A,B)≤r+t=R(A)+R(B)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
翻车鱼1998
2018-05-09
知道答主
回答量:2
采纳率:0%
帮助的人:1502
展开全部
证r(A,B)小于(A 0
0 B)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式