如图10,抛物线 y=-x^2+bx+c的顶点为D,与x轴交于A(-1,0)、B(3,0),与y轴交于点C. 15

(1)求该抛物线的解析式;(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长... (1)求该抛物线的解析式;
(2)若点P为线段BC上的一点(不与B、C重合),PM∥y轴,且PM交抛物线于点M,交x轴于点N,当四边形OBMC的面积最大时,求△BPN的周长;
(3)在(2)的条件下,当四边形OBMC的面积最大时,在抛物线的对称轴上是否存在点Q,使得△CNQ为直角三角形,若存在,直接写出点Q的坐标.
展开
 我来答
zhou叶立德
2015-05-16 · TA获得超过8931个赞
知道大有可为答主
回答量:7324
采纳率:43%
帮助的人:648万
展开全部
抛物线y=-x^2+bx+c与x轴交予A(1,0),B(-3,0)两点,
得-1+b+c=0
-9-3b+c=0
得b=-2,c=3
该抛物线的解析式y=-x^2-2x+3
点C为(0.3)
△ABC的面积为1/2AB*OC=6
设在抛物线第二象限图象上存在点M(x0,y0)使△MBC是以∠BCM为直角的直角三角形
则x00
y0=-x0^2-2x0+3 (1)
再由MB^2=MC^2+BC^2得
(x0+3)^2+(y0-0)^2=(x0-0)^2+(y0-3)^2+(0+3)^2+(3-0)^2 (2)
由(1)和(2)可解得
y0=3,x0=0或者y0=4,x0=-1
又x00
所以y0=4,x0=-1
在抛物线第二象限图象上存在点M(-1,4)使△MBC是以∠BCM为直角的直角三角形.
gsRT43YY09 2014-10-27
追问
则x00
y0=-x0^2-2x0+3 (1)
再由MB^2=MC^2+BC^2得
(x0+3)^2+(y0-0)^2=(x0-0)^2+(y0-3)^2+(0+3)^2+(3-0)^2 (2)
由(1)和(2)可解得
y0=3,x0=0或者y0=4,x0=-1
又x00
所以y0=4,x0=-1
这里开始就好多个00没懂……
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式