在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(根号3)csinA =acosC (1)求角C的大小
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(根号3)csinA=acosC(1)求角C的大小(2)当(根号3)cosA+cosB取得最大值时,试判断△AB...
在△ABC中,角A,B,C所对的边分别为a,b,c,且满足(根号3)csinA =acosC
(1)求角C的大小
(2)当(根号3)cosA+cosB 取得最大值时,试判断△ABC的形状。
求详解,要过程。谢谢! 展开
(1)求角C的大小
(2)当(根号3)cosA+cosB 取得最大值时,试判断△ABC的形状。
求详解,要过程。谢谢! 展开
展开全部
(1)
∵a/sinA=c/sinC 正弦定理
∴CsinA=asinC
已知:√3CsinA=acosC
∴√3asinC=acosC
tanC=sinC/cosC=√3/3
∴ C=30度
(2)
在△ABC中
∵C=30度
∴A+B=180-C=180-30=150
√3cosA+cosB
=√3cosA+cos(150-A)
=√3cosA+(cos150*cosA+sin150*sinA)
=√3cosA+(-√3/2*cosA+1/2*sinA)
=√3/2*cosA+1/2*sinA
=sin60*cosA+cos60*sinA
=sin(A+60)
当A+60=90时,有最大值1
∴A=30
∴A=C
所以为等腰三角形。
∵a/sinA=c/sinC 正弦定理
∴CsinA=asinC
已知:√3CsinA=acosC
∴√3asinC=acosC
tanC=sinC/cosC=√3/3
∴ C=30度
(2)
在△ABC中
∵C=30度
∴A+B=180-C=180-30=150
√3cosA+cosB
=√3cosA+cos(150-A)
=√3cosA+(cos150*cosA+sin150*sinA)
=√3cosA+(-√3/2*cosA+1/2*sinA)
=√3/2*cosA+1/2*sinA
=sin60*cosA+cos60*sinA
=sin(A+60)
当A+60=90时,有最大值1
∴A=30
∴A=C
所以为等腰三角形。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询