1.求证:sinθ(1+tanθ)+cosθ(1+1/tanθ)=1/tanθ+1/cosθ
第一问 =1/tanθ+1/cosθ 改为)=1/sinθ+1/cosθ 谢谢 4.已知sina+cosa=7/13. a∈(0,π),求tana 展开
1、
左边
= sinθ(1+tanθ)+cosθ(1+tanθ)/tanθ
= sinθ(1+tanθ)+cosθ*cosθ(1+tanθ)/sinθ
= (1+tanθ)(sinθ*sinθ+cosθ*cosθ)/sinθ
=(1+tanθ)/sinθ
右边
= cosθ/sinθ+1/cosθ
= (cosθ*cosθ+sinθ)/(sinθ*cosθ)
= (cosθ+tanθ)/sinθ
ft,题目中取θ=45°时,左边= 2.828,右边 = 2.414,题目有鬼!
2.
原式上下皆除以cosa:
原式 = (4tana - 2)/(5 + 3tana)
= (-4/3-2)/(5 -1)
= - 5/6
3.
对不起,麻烦第一问重做一遍,题目改过来了
1.
刚才计算过:
左边 = (1+tanθ)/sinθ
右边 = 1/sinθ + sinθ/(sinθ*cosθ)
=1/sinθ + (sinθ/*cosθ)/(sinθ)
=1/sinθ + tanθ/sinθ
=(1+tanθ)/sinθ
搞定,呵呵
4.
设cosa = x
则有sina*sina = (7/13 - x)^2
1-x^2 = 49/169 - 14/13*x +x^2
x = -5/13 或 12/13
sina = 12/13 或 5/13(在给定的范围内sin只能取正值)
但sina = 5/13不符合题意(是因为前面两边同时平方导致的),故舍去
tana = sina/cosa
=-12/5