
在斜三角形ABC中,角A,B,C所对的边分别为a,b,c,若tanC/tanA+tanC/tanB=1,则(a2+b2)/c2=
1个回答
展开全部
tanC/tanA+tanC/tanB=1
tanBtanC+tanAtanC=tanAtanB
tanC(tanA+tanB)=tanAtanB
sinC/cosC (sinA/cosA+sinB/cosB)=sinAsinB/cosAcosB
sinC (sinAcosB+cosAsinB)=sinAsinBcosC
sinC sin(A+B)=sinAsinBcosC
sinC sin(180°-C)=sinAsinBcosC
sin^2C=sinAsinBcosC
sinC/sinA * sinC/sinB = cosC
c/a * c/b = (a^2+b^2-c^2)/(2ab)
2c^2 = a^2+b^2-c^2
a^2+b^2 = 3c^2
(a^2+b^2)/c^2 =3
tanBtanC+tanAtanC=tanAtanB
tanC(tanA+tanB)=tanAtanB
sinC/cosC (sinA/cosA+sinB/cosB)=sinAsinB/cosAcosB
sinC (sinAcosB+cosAsinB)=sinAsinBcosC
sinC sin(A+B)=sinAsinBcosC
sinC sin(180°-C)=sinAsinBcosC
sin^2C=sinAsinBcosC
sinC/sinA * sinC/sinB = cosC
c/a * c/b = (a^2+b^2-c^2)/(2ab)
2c^2 = a^2+b^2-c^2
a^2+b^2 = 3c^2
(a^2+b^2)/c^2 =3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询