根号下(2x-x^2)在0到2上的不定积分为多少哦,谢谢求解

根号下(2x-x^2)在0到2上的不定积分为多少哦,谢谢求解... 根号下(2x-x^2)在0到2上的不定积分为多少哦,谢谢求解 展开
 我来答
Dilraba学长
高粉答主

2019-06-05 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411033

向TA提问 私信TA
展开全部

解题过程如下图:

记作∫f(x)dx或者∫f(高等微积分中常省去dx),即∫f(x)dx=F(x)+C。其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数或积分常量,求已知函数的不定积分的过程叫做对这个函数进行不定积分。

扩展资料

常用积分公式:

1)∫0dx=c

2)∫x^udx=(x^(u+1))/(u+1)+c

3)∫1/xdx=ln|x|+c

4)∫a^xdx=(a^x)/lna+c

5)∫e^xdx=e^x+c

6)∫sinxdx=-cosx+c

7)∫cosxdx=sinx+c

一般定理

定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。

定理2:设f(x)区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。

定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。

牛顿-莱布尼茨公式

定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。

轮看殊O
高粉答主

2019-05-12 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:731万
展开全部

解题如下:

扩展资料

不定积分的公式

1、∫ a dx = ax + C,a和C都是常数

2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1

3、∫ 1/x dx = ln|x| + C

4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1

5、∫ e^x dx = e^x + C

6、∫ cosx dx = sinx + C

7、∫ sinx dx = - cosx + C

8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-03-18 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1553万
展开全部

简单计算一下即可,答案如图所示

备注

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
mike
2017-06-13 · 知道合伙人教育行家
mike
知道合伙人教育行家
采纳数:15109 获赞数:42256
担任多年高三教学工作。

向TA提问 私信TA
展开全部
令y=√(2x-x²),所以y²=2x-x²,即(x-1)²+y²=1
由定积分的几何意义:∫(0,2) √(2x-x²)dx=π*1²/2=π/2.
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
推荐于2018-10-13
展开全部

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(6)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式