已知0≤x≤π/2求使根号3sinx+cosx=4m-6/4-m有意义的实数m的取值范围
1个回答
2012-07-29 · 知道合伙人教育行家
关注
展开全部
0≤x≤π/2
√3sinx+cosx = (4m-6)/(4-m)
2(sinxcosπ/3+cosxsinπ/3) = (4m-6)/(4-m)
sin(x+π/3) = (2m-3)/(4-m)
-1≤(2m-3)/(4-m)≤1
(2m-3)/(4-m)+1≥0,并且(2m-3)/(4-m)-1≤0
(m+1)/(4-m)≥0,并且(3m-7)/(4-m)≤0
(m+1)/(m-4)≤0,并且(3m-7)/(m-4)≥0
-1≤m<4;并且m≤7/3,或m>4
∴-1≤m≤7/3
√3sinx+cosx = (4m-6)/(4-m)
2(sinxcosπ/3+cosxsinπ/3) = (4m-6)/(4-m)
sin(x+π/3) = (2m-3)/(4-m)
-1≤(2m-3)/(4-m)≤1
(2m-3)/(4-m)+1≥0,并且(2m-3)/(4-m)-1≤0
(m+1)/(4-m)≥0,并且(3m-7)/(4-m)≤0
(m+1)/(m-4)≤0,并且(3m-7)/(m-4)≥0
-1≤m<4;并且m≤7/3,或m>4
∴-1≤m≤7/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询