关于二重积分的,求高手解答啊
展开全部
先得出∫e^(-2x)e^(-y)dxdy的的二重积分为:
[-1/2e^(-2x) +1/2e^0]*[ -e^(-y)+e^(0)] 其中x趋于无穷,y趋于无穷
=1/2(e^(-2x)+1)(e^(-y)-1)x趋于无穷,y趋于无穷
=1/2(0+1)(0-1)=-1/2
c*(-1/2)=1
c=-2
第二个:∫dx∫(0,x) 2e^-(2x+y)dy
=∫2e^(-2x)dx∫(0,x)e^(-y)dy
=∫2e^(-2x)[-e^(-x)+e^(-0)]dx
=-∫2e^(-3x)+∫e^(-2x)dx
=[2/3e^(-3x)-1/2e^(-2x)] (0,无穷)
=(0-0)-(2/3*1-1/2)=1/2-2/3=-1/6
[-1/2e^(-2x) +1/2e^0]*[ -e^(-y)+e^(0)] 其中x趋于无穷,y趋于无穷
=1/2(e^(-2x)+1)(e^(-y)-1)x趋于无穷,y趋于无穷
=1/2(0+1)(0-1)=-1/2
c*(-1/2)=1
c=-2
第二个:∫dx∫(0,x) 2e^-(2x+y)dy
=∫2e^(-2x)dx∫(0,x)e^(-y)dy
=∫2e^(-2x)[-e^(-x)+e^(-0)]dx
=-∫2e^(-3x)+∫e^(-2x)dx
=[2/3e^(-3x)-1/2e^(-2x)] (0,无穷)
=(0-0)-(2/3*1-1/2)=1/2-2/3=-1/6
展开全部
1. C∫(0,+∞)∫(0,+∞)e^[-(2x+y)] dxdy
=C∫(0,+∞) -(1/2)e^[-(2x+y)]|[x=(0,+∞)] dy
=C∫(0,+∞) -(1/2) [e^(-∞)-e^(-y)] dy
=C∫(0,+∞) (1/2)e^(-y) dy
=-(C/2)e^(-y)|(0,+∞)
=-(C/2)[e^(-∞)-e^0]
=C/2=1
∴C=2
2. ∫(0,+∞)dx∫(0,x)2e^[-(2x+y)] dy
=∫(0,+∞) [-2e^-(2x+y)]|[y=(0,x)]dx
=∫(0,+∞) [-2e^(-3x)+2e^(-2x)]dx
=[(2/3)e^(-3x)-e^(-2x)]|(0,+∞)
=[(2/3)e^(-∞)-e^(-∞)]-[(2/3)e^0-e^0]
=0+1/3
=1/3
=C∫(0,+∞) -(1/2)e^[-(2x+y)]|[x=(0,+∞)] dy
=C∫(0,+∞) -(1/2) [e^(-∞)-e^(-y)] dy
=C∫(0,+∞) (1/2)e^(-y) dy
=-(C/2)e^(-y)|(0,+∞)
=-(C/2)[e^(-∞)-e^0]
=C/2=1
∴C=2
2. ∫(0,+∞)dx∫(0,x)2e^[-(2x+y)] dy
=∫(0,+∞) [-2e^-(2x+y)]|[y=(0,x)]dx
=∫(0,+∞) [-2e^(-3x)+2e^(-2x)]dx
=[(2/3)e^(-3x)-e^(-2x)]|(0,+∞)
=[(2/3)e^(-∞)-e^(-∞)]-[(2/3)e^0-e^0]
=0+1/3
=1/3
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询