3个回答
展开全部
对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分 ∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标。
复数的概念起源于求方程的根,在二次、三次代数方程的求根中就出现了负数开平方的情况。在很长时间里,人们对这类数不能理解。
扩展资料:
复变数复值函数的简称。设A是一个复数集,如果对A中的任一复数z,通过一个确定的规则有一个或若干个复数w与之对应,就说在复数集A上定义了一个复变函数,记为w=ƒ(z)。
这个记号表示,ƒ(z)是z通过规则ƒ而确定的复数。如果记z=x+iy,w=u+iv,那么复变函数w=ƒ(z)可分解为w=u(x,y)+iv(x,y)。
参考资料来源:百度百科-复变函数
展开全部
周线就是复平面内的闭曲线,复变函数的积分类似于高等数学中对坐标的曲线积分,最一般的方法是对于复变函数f(z)=u+iv,其中u=u(x,y),v=v(x,y),z=x+iy,则复变函数积分 ∫f(z)dz=∫(u+iv)(dx+idy)=∫(udx-vdy)+i∫(vdx+udy),从而转化为两个对坐标...
追问
求解1 24 小题
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
复积分和第二类曲线积分有类似之处,即积分是按着有方向的曲线求解。讨论积分路径,积分区域。利用被积函数的解析性,积分区域的奇点,留数定理,复合闭路定理求解。 实数积分定积分是所有的积分的基础,包括曲线积分,曲面积分,二重积分,三重...
追问
求解124小题
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询