线性代数问题: 设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵。

注,(E+A)^(-1)表示(E+A)的逆... 注,(E+A)^(-1)表示(E+A)的逆 展开
lry31383
高粉答主

2012-07-30 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.5万
采纳率:91%
帮助的人:1.6亿
展开全部
证明:
记 B=(E-A)(E+A)^-1
注意到(E-A)(E+A)=E-A^2=(E+A)(E-A)和A^T=-A,有
B^TB
=((E+A)^-1)^T)(E-A)^T(E-A)(E+A)^-1
=((E+A)^T)-1)(E-A)^T(E-A)(E+A)^-1
=(E-A)^-1(E+A)(E-A)(E+A)^-1
=(E-A)^-1(E-A)(E+A)(E+A)^-1
=E
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式