一道关于数列求和的问题,求解!
看题目:1/(1x3x5)+1/(2x4x6)+1/(3x5x7)+...+1/[nx(n+1)x(n+2)]=?详细的解题过程,如果可以写出来拍照上传的话更好,谢谢!对...
看题目:
1 / ( 1 x 3 x 5 ) + 1 / ( 2 x 4 x 6 ) + 1 / ( 3 x 5 x 7 ) + ... + 1 / [ n x ( n + 1 ) x ( n + 2 ) ] = ?
详细的解题过程,如果可以写出来拍照上传的话更好,谢谢!
对不起最后一项写错了,最后一项是 n(n+2)(n+4) :) 展开
1 / ( 1 x 3 x 5 ) + 1 / ( 2 x 4 x 6 ) + 1 / ( 3 x 5 x 7 ) + ... + 1 / [ n x ( n + 1 ) x ( n + 2 ) ] = ?
详细的解题过程,如果可以写出来拍照上传的话更好,谢谢!
对不起最后一项写错了,最后一项是 n(n+2)(n+4) :) 展开
3个回答
2015-09-01
展开全部
拆项:1/[n(n+2)(n+4)]=1/4[1/n(n+2)-1/(n+2)(n+4)];
1/(1 x 3 x 5)=1/4[1/(1 x 3)-1/(3 x 5)]
1/(2 x 4 x 6)=1/4[1/(2 x 4)-1/(4 x 6)]
1/(3 x 5 x 7)=1/4[1/(3 x 5)-1/(5 x 7)]
1/(4 x 6 x 8)=1/4[1/(4 x 6)-1/(6 x 8)]
………………
1/[(n-3)(n-1)(n+1)]=1/4[1/(n-3)(n-1)-1/(n-1)(n+1)]
1/[(n-2)n(n+2)]=1/4[1/(n-2)n-1/n(n+2)]
1/[(n-1)(n+1)(n+3)]=1/4[1/(n-1)(n+1)-1/(n+1)(n+3)]
1/[n(n+2)(n+4)]=1/4[1/n(n+2)-1/(n+2)(n+4)]
求和可得:1/(1 x 3 x 5)+1/(2 x 4 x 6)+...+1/[n(n+2)(n+4)]
=1/4[1/(1 x 3)+1/(2 x 4)-1/(n+1)(n+3)-1/(n+2)(n+4)]。
1/(1 x 3 x 5)=1/4[1/(1 x 3)-1/(3 x 5)]
1/(2 x 4 x 6)=1/4[1/(2 x 4)-1/(4 x 6)]
1/(3 x 5 x 7)=1/4[1/(3 x 5)-1/(5 x 7)]
1/(4 x 6 x 8)=1/4[1/(4 x 6)-1/(6 x 8)]
………………
1/[(n-3)(n-1)(n+1)]=1/4[1/(n-3)(n-1)-1/(n-1)(n+1)]
1/[(n-2)n(n+2)]=1/4[1/(n-2)n-1/n(n+2)]
1/[(n-1)(n+1)(n+3)]=1/4[1/(n-1)(n+1)-1/(n+1)(n+3)]
1/[n(n+2)(n+4)]=1/4[1/n(n+2)-1/(n+2)(n+4)]
求和可得:1/(1 x 3 x 5)+1/(2 x 4 x 6)+...+1/[n(n+2)(n+4)]
=1/4[1/(1 x 3)+1/(2 x 4)-1/(n+1)(n+3)-1/(n+2)(n+4)]。
更多追问追答
追问
你下边有个回答和你答案不一样,帮看看谁错了
追答
答案是一样的,我最后一步化简不就是下面的答案吗。
从下面答案的倒数第二步可以看出。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/(1*3*5)=(1/4)[1/(1*3)-1/(3*5)]=(1/8)[(1/1-1/3)-(1/3-1/5)]
1/(2*4*6)=(1/4)[1/(2*4)-1/(4*6)]=(1/8)[(1/2-1/4)-(1/4-1/6)]
:
1/[n*(n+2)*(n+4)]=(1/4){1/[n*(n+2)]-1/[(n+2)*(n+4)]}=(1/8){[1/n-1/(n+2)]-[1/(n+2)-1/(n+4)]}
1 / ( 1 x 3 x 5 ) + 1 / ( 2 x 4 x 6 ) + 1 / ( 3 x 5 x 7 ) + ... + 1 / [ n x ( n + 2 ) x ( n + 4 ) ] = ?
=(1/8){[1/1+1/2-1/(n+1)-1/(n+2)]-[1/3+1/4-1/(n+3)-1/(n+4)]}
=(1/8)[11/12-1/(n+1)-1/(n+2)+1/(n+3)+1/(n+4)]
=(1/8){11/12-2/[(n+1)(n+3)]-2/[(n+2)(n+4)]}
=11/96-(1/4)(2n^2+10n+11)/[(n+1)(n+2)(n+3)(n+4)]
1/(2*4*6)=(1/4)[1/(2*4)-1/(4*6)]=(1/8)[(1/2-1/4)-(1/4-1/6)]
:
1/[n*(n+2)*(n+4)]=(1/4){1/[n*(n+2)]-1/[(n+2)*(n+4)]}=(1/8){[1/n-1/(n+2)]-[1/(n+2)-1/(n+4)]}
1 / ( 1 x 3 x 5 ) + 1 / ( 2 x 4 x 6 ) + 1 / ( 3 x 5 x 7 ) + ... + 1 / [ n x ( n + 2 ) x ( n + 4 ) ] = ?
=(1/8){[1/1+1/2-1/(n+1)-1/(n+2)]-[1/3+1/4-1/(n+3)-1/(n+4)]}
=(1/8)[11/12-1/(n+1)-1/(n+2)+1/(n+3)+1/(n+4)]
=(1/8){11/12-2/[(n+1)(n+3)]-2/[(n+2)(n+4)]}
=11/96-(1/4)(2n^2+10n+11)/[(n+1)(n+2)(n+3)(n+4)]
更多追问追答
追问
你下边有个回答和你的答案不一样,帮看看谁错了
追答
一样的
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询