急急急!!已知定义域为(0,正无穷)的函数f(x)满足对任意x∈(0,正无穷),恒有f(2x)=2f(x)成立

已知定义域为(0,正无穷)的函数f(x)满足对任意x∈(0,正无穷),恒有f(2x)=2f(x)成立,且当x∈(1,2]时,f(x)=2-x,求f(x)的分段解析式!... 已知定义域为(0,正无穷)的函数f(x)满足对任意x∈(0,正无穷),恒有f(2x)=2f(x)成立,且当x∈(1,2]时 ,f(x)=2-x ,求f(x)的分段解析式! 展开
louislau007
2012-07-30 · TA获得超过172个赞
知道小有建树答主
回答量:105
采纳率:0%
帮助的人:76.6万
展开全部
f(x)=2^(n+1)-x x∈(2^n,2^(n+1)] n∈整数(正负皆可)
具体解法
当x∈(2^n,2^(n+1)]时, n∈整数(正负皆可)
由于f(2x)=2f(x) x∈(2^n,2^(n+1)]
所以f(x)=2f(x/2) x/2∈(2^(n-1),2^n]
=2^2f(x/(2^2)) x/(2^2)∈(2^(n-2),2^(n-1)]
=2^3f(x/(2^3)) x/(2^3)∈(2^(n-3),2^(n-2)]
=……
=2^nf(x/(2^n)) x/(2^n)∈(2^0,2^1]=∈(1,2]
又因为 当x∈(1,2]时 ,f(x)=2-x 代入上式
得到
f(x)=2^nf(x/(2^n))=2^n[2-x/(2^n)]=2^(n+1)-x x∈(2^n,2^(n+1)] n∈整数(正负皆可)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式