过抛物线y2=2px(p>0)的焦点F且倾斜角为60°的直线l交抛物线于A、B两点,若|AF|=3,则此抛物线方程为
5个回答
展开全部
由∣AF∣=2P/sin60°^2=3 可以解得P=9/8。所以此抛物线的方程为
y^2=9/4x。
y^2=9/4x。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-07-31 · 知道合伙人教育行家
关注
展开全部
由抛物线的定义,A 到焦点的距离等于 A 到其准线的距离 ,
即 |AF|=|AF|*cos60+p ,
所以,3=3/2+p ,
解得 p=3/2 ,
因此抛物线方程为 y^2=3x 。
即 |AF|=|AF|*cos60+p ,
所以,3=3/2+p ,
解得 p=3/2 ,
因此抛物线方程为 y^2=3x 。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
直线l过抛物线y^2=2px(p>0)的焦点F且倾斜角为60°,它与抛物线交于A.B两点,|AF|=4。 求抛物线与直线l的方程。 y^2=2px 焦点(p/2,0),
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
由题设可得F(p/2,0) 且直线的斜率为tan60°=sqrt(3) (sqrt(3) 表示根号3),所以直线l为y=sqrt(3)*x+c ,将F带入此方程可得c = -(1/2)*sqrt(3)*p ,从而可得直线l为
y=sqrt(3)*x+ -(1/2)*sqrt(3)*p ,又|AF|=3,则A的横坐标为(p+3)/2 ,将其带入抛物线与所解得的直线l,联立可解得p=3/2。故抛物线y^2=3x
y=sqrt(3)*x+ -(1/2)*sqrt(3)*p ,又|AF|=3,则A的横坐标为(p+3)/2 ,将其带入抛物线与所解得的直线l,联立可解得p=3/2。故抛物线y^2=3x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询