解方程:(x-4)/(x-5)-(x-5)/(x-6)=(x-7)/(x-8)-(x-8)/(x-9)、、x=???求过程
展开全部
解:
(x-4)/(x-5) -(x-5)/(x-6)=(x-7)/(x-8)-(x-8)/(x-9)
(x-4)/(x-5)+(x-8)/(x-9)=(x-5)/(x-6)+(x-7)/(x-8)
(x-5+1)/(x-5)+(x-9+1)/(x-9)=(x-6+1)/(x-6)+(x-8+1)/(x-8)
1/(x-5)+1/(x-9) +2=1/(x-6) +1/(x-8)+2
1/(x-5)+1/(x-9)=1/(x-6)+1/(x-8)
[(x-5)+(x-9)]/[(x-5)(x-9)]=[(x-6)+(x-8)]/[(x-6)(x-8)]
(2x-14)/(x²-14x+45)=(2x-14)/(x²-14x+48)
分母x²-14x+45恒≠x²-14x+48,要等式成立,只有分子=0
2x-14=0
x=7
代入分式方程检验,分母均≠0,x=7是分式方程的解。
x=7
(x-4)/(x-5) -(x-5)/(x-6)=(x-7)/(x-8)-(x-8)/(x-9)
(x-4)/(x-5)+(x-8)/(x-9)=(x-5)/(x-6)+(x-7)/(x-8)
(x-5+1)/(x-5)+(x-9+1)/(x-9)=(x-6+1)/(x-6)+(x-8+1)/(x-8)
1/(x-5)+1/(x-9) +2=1/(x-6) +1/(x-8)+2
1/(x-5)+1/(x-9)=1/(x-6)+1/(x-8)
[(x-5)+(x-9)]/[(x-5)(x-9)]=[(x-6)+(x-8)]/[(x-6)(x-8)]
(2x-14)/(x²-14x+45)=(2x-14)/(x²-14x+48)
分母x²-14x+45恒≠x²-14x+48,要等式成立,只有分子=0
2x-14=0
x=7
代入分式方程检验,分母均≠0,x=7是分式方程的解。
x=7
展开全部
直接按步骤来计算
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
1/﹙x-5﹚-1/﹙x-6﹚=1/﹙x-8﹚-1/﹙x-9﹚
﹙x-5﹚﹙x-6﹚=﹙x-8﹚﹙x-9﹚
x=7
﹙x-5﹚﹙x-6﹚=﹙x-8﹚﹙x-9﹚
x=7
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询