如何解决变化电路的计算题,拜托了!!!
1个回答
展开全部
计算题所涉及到的内容除前面所讲到的力学部分以外,还有热学和电学部分,这两部分知识是计算题常选的内容。
一、关于热量的计算
(一)利用热量计算公式进行计算
从热量的计算公式Q=cm△t出发,物体吸收(或放出)的热量跟物体的质量m、比热容c、升高(或降低)的温度有关,使用时应注意:
(1)公式只适用于物体温度改变时吸收(或放出)热量的计算,对有物态变化的过程不能适用。如果过程中存在物态变化,不能用该公式求解,需要考虑在状态变化时所吸收(或放出)的热量。
(2)公式中“△t”为物体温度的变化,当物体温度升高吸热时△t=t-t0(t和t0分别指物体的末温和初温);当物体温度降低时△t=t0-t。利用公式计算时要清楚吸收(或放出)热量的多少跟温度改变的多少有关。
【例题1】卖火柴的小女孩在严寒中只能靠点燃火柴取暖。一根火柴的质量约为0.065g,火柴的热值平均为1.2×107J/kg,求一根火柴完全燃烧能使1m3的空气温度升高多少摄氏度?〔已知空气的密度为1.3kg/m3,比热容为1×103J/(kg•℃)〕
【点拨】本题把燃料燃烧的放热公式、热量的计算公式与密度知识结合起来,具有一定的综合性。应用公式时要注意其适用条件和范围
【解析】设火柴完全燃烧释放的热量全部被空气吸收,由Q吸=Q放得cm1△t=qm2
所以完全燃烧一根火柴能使1m3的空气升高的温度为
△t=qm2/ cm1=qm2/cρV=0.6℃
(二)利用焦耳定律公式进行热量计算
利用公式Q=I2Rt计算热量应注意公式中的各物理量都是对同一段电路或同一导体而言的。对于W=UIt与Q=I2Rt的理解
(1)表示电流通过导体时所做的功,它表示电能转化为其它形式能的数量。电能可以转化为内能、机械能、化学能等,不管转化为哪种形式,转化的能量均用此式计算。
(2)Q=I2Rt表示电流通过导体时产生的热量,它表示电能转化为内能的数量。这个计算公式是计算焦耳热的普遍公式,凡是有电流通过导体时,都可以用它来计算所产生的热量。
(3)利用欧姆定律导出的公式Q=UIt,Q=U2t/R只适用于纯电阻电路。
【例题2】一个5Ω的电阻通过它的电流为2A,在10s内放出的热量是 J。如果通过它的电流减少到原来的1/2,在相同的时间内所放出的热量是原来的 。
【点拨】当某用电器中的电流或两端的电压减小时,其产生的热量是与其平方成比例的,如果电流减少为1/2,则热量就变为1/4。
【解析】应用焦耳定律可直接求出电阻放出的热量为
Q=I2Rt=(2A)2×5Ω×10s=200J
当电流减为原来的1/2时,即电流为1A,则电阻在10s内产生的热量为
Q′=I′2 Rt=50J
(三)热量的小综合计算
中考中这类试题很多,解这类试题一是要搞清楚吸放热关系,二是注意能量转换关系,基本思路是Q吸=ηQ放是基本思路。
【例题3】在一把质量为500g的铝质电热水壶中,装有2kg水,用这把电热水壶把20℃的水加热到100℃,若该电热水壶的热效率为80%,问烧开这壶水需要消耗多少电能?〔c铝=0.88×103J/(kg•℃),c水=4.2×103J/(kg•℃)〕
【点拨】解决热学计算的问题,关键在于搞清吸收放热的关系,正确运用热量计算公式和焦耳定律的公式以及热平衡方程求解。解答此题时还要注意盛水容器本身的吸热问题,吸热部分是由水和壶两部分组成的。
【解答】
水与壶吸收的热量
Q=(c铝m铝+c水m水)△t=(0.88×0.5+4.2×2)×103×80=7.072×105(J)
消耗的电能W=Q/η=(7.072×105)/0.8=8.84×105(J)
二、关于电学部分的计算
(一) 关于电路的计算
1.有关欧姆定律的简单计算
运用欧姆定律进行简单的计算,首先应该明确以下几点:
(1)公式中的I、U、R代表同一段电路的电流、电压和电阻,而且R必须是纯电阻。
(2)必须将同一导体或同一段的电流、电压和电阻代入计算。
【例题4】有一电阻器,如果在它的两端加12V的电压,通过它的电流是0.4A,那么它的电阻
是多少?;如果在电阻器的两端加15V电压时,通过它的电流是多少A?它的电阻阻值是多少?
【点拨】对于同一段电路电阻不随电压变化而变化。本题容易出现错误的是违背“同一性”原
则,将公式中的三个物理量错误使用,导致对同一导体其电阻的阻值不同的错误结果。
【解答】
本题第一问很简单,对于第二、三问只给了一个已知条件,但实际上隐含着对同一个用电器,
如果没有说明其它因素影响电阻时,其阻值是不变的,因此,当这个用电器两端加15V电压时,通过的电流应该是15V/30Ω=0.5A,其电阻值R=30Ω。
2.电阻的串并联及其欧姆定律的综合练习
电路中电阻的串并联计算,应在理清串并联电路的基本特点的基础上,结合欧姆定律进行综合
性的练习,这类试题在中考试题中占了相当大的部分。
【例题5】某同学利用如图1所示的电路研究电流与电阻的关系,实验中他保持滑动变阻器滑
片位置不变,换用不同的定值电阻R(5Ω,10Ω,15Ω),使电阻成整数倍地变化,相应的电流记录于表中,分析实验数据后,得出结论:R两端电压不变时,R中的电流与R阻值不成反比;他得出错误结论的原因是 。
【解析】因为影响电流的因素有电压和电阻两个因素,所以研究电流和电阻关系时,应该保持电阻两端的电压一定。由电路图可以看出,R两端的电压UR=IR,而电流I=U总/(R+R变),所以UR=RU总/(R+R变)=U总/(1+R变/R),由题目中给定的条件可知:当R改变时,若R变不变,可以看出,UR随R的大小改变而变化,即在电阻改变时,却没有保持定值电阻R的两端电压不变,所以得不出正确的结论。正确的做法应该是在换用不同的定值电阻时,应调节滑动变阻器使定值电阻两端电压保持不变,然后再读取数据
并分析数据。
3.变化电路的定性分析和定量计算
电学的解题关键是要能够准确地辨别电路是串联电路还是并联电路,比较复杂的电路图能够准确地简化为等效的串、并联电路,然后运用串、并联电路中个电学的基本量之间的关系和两个定律正确解题。
电学试题中多元件电路也是常见的情况之一。同学们对于多元件电路感到比较困难,其原因有二:一是解题的步骤不清楚,二是解题中不能将复杂的电路简化为简单的串、并联等效电路,无法正确运用所学过的定律和概念。
多元件电路是指含有多个电表和用电器的电路。解答这类问题的基本步骤是:
1.明确电路中各用电器之间的连接方式是串联还是并联;
2.电路中的各个电表所测量的对象是谁;
3.电路发生变化后,用电器的连接方式、电表测量对象有无变化,或发生了什么变化。
还有一种情况是动态电路的计算,这类电路有两种:一种是利用开关的通断改变电路;另一种是利用滑动变阻器滑片的移动改变电路。由于动态电路的开关通断或变阻器滑片的移动,电路的连接以及电路中的各物理量也会随之改变,使得电路计算变的复杂,解答
此类试题,应抓好三个环节:
1.题图对照,侧重识图。
2.梳理条件,抓住关键,找出突破口。
3.明确解题思路、综合运用公式进行计算。
注意三个要点:
1.严格区分不同条件下的电路,学会简化电路。
2.针对不同条件下的电路,分别列出相应的关系式。
3.结合题目的已知条件,寻找解题的突破口并进行计算
【例题3】如图2所示的电路中,电源电压是12V且保持不变,R1=R3=4Ω, R2=6Ω.试求:
(1)当开关S1、S2断开时,电流表和电压表示数各是多少?
(2)当开关S1、S2均闭合时,电流表和电压表示数各是多少?
【解析】
(1)当开关S1、S2断开时,原电路图可变为图3所示
因为R2与R3是串联在电路中,所以,电路中的总电阻 R=R1+R2=6Ω+4Ω=10Ω
根据欧姆定律的电路中的电流I=U/R=1.2A
故电流表的示数为1.2A
电压表并联在R2两端,测的是R2两端的电压U2,根据欧姆定律的变形公式U=IR得
U2=IR2=1.2A×6Ω=7.2V
(2) 当开关S1、S2均闭合时,电阻R3被短路,电阻R1与R2并联在电路中,原电路可等效为图4所示电路,电压表示数为电源电压U=12V
R1与R2并联的总电阻为
R总=R1 R2/( R2+ R2)=2.4Ω,电流表测量干路电流为 I总=U/ R总=5A
解答此类问题,关键是要先根据不同条件先的开关闭合、断开情况,分析电路的连接情况以及各电表的作用,然后根据欧姆定律和串联、并联电路特点进行计算。有关电学其它方面的问题我们在以后的探索研究案例中再加以叙述。
一、关于热量的计算
(一)利用热量计算公式进行计算
从热量的计算公式Q=cm△t出发,物体吸收(或放出)的热量跟物体的质量m、比热容c、升高(或降低)的温度有关,使用时应注意:
(1)公式只适用于物体温度改变时吸收(或放出)热量的计算,对有物态变化的过程不能适用。如果过程中存在物态变化,不能用该公式求解,需要考虑在状态变化时所吸收(或放出)的热量。
(2)公式中“△t”为物体温度的变化,当物体温度升高吸热时△t=t-t0(t和t0分别指物体的末温和初温);当物体温度降低时△t=t0-t。利用公式计算时要清楚吸收(或放出)热量的多少跟温度改变的多少有关。
【例题1】卖火柴的小女孩在严寒中只能靠点燃火柴取暖。一根火柴的质量约为0.065g,火柴的热值平均为1.2×107J/kg,求一根火柴完全燃烧能使1m3的空气温度升高多少摄氏度?〔已知空气的密度为1.3kg/m3,比热容为1×103J/(kg•℃)〕
【点拨】本题把燃料燃烧的放热公式、热量的计算公式与密度知识结合起来,具有一定的综合性。应用公式时要注意其适用条件和范围
【解析】设火柴完全燃烧释放的热量全部被空气吸收,由Q吸=Q放得cm1△t=qm2
所以完全燃烧一根火柴能使1m3的空气升高的温度为
△t=qm2/ cm1=qm2/cρV=0.6℃
(二)利用焦耳定律公式进行热量计算
利用公式Q=I2Rt计算热量应注意公式中的各物理量都是对同一段电路或同一导体而言的。对于W=UIt与Q=I2Rt的理解
(1)表示电流通过导体时所做的功,它表示电能转化为其它形式能的数量。电能可以转化为内能、机械能、化学能等,不管转化为哪种形式,转化的能量均用此式计算。
(2)Q=I2Rt表示电流通过导体时产生的热量,它表示电能转化为内能的数量。这个计算公式是计算焦耳热的普遍公式,凡是有电流通过导体时,都可以用它来计算所产生的热量。
(3)利用欧姆定律导出的公式Q=UIt,Q=U2t/R只适用于纯电阻电路。
【例题2】一个5Ω的电阻通过它的电流为2A,在10s内放出的热量是 J。如果通过它的电流减少到原来的1/2,在相同的时间内所放出的热量是原来的 。
【点拨】当某用电器中的电流或两端的电压减小时,其产生的热量是与其平方成比例的,如果电流减少为1/2,则热量就变为1/4。
【解析】应用焦耳定律可直接求出电阻放出的热量为
Q=I2Rt=(2A)2×5Ω×10s=200J
当电流减为原来的1/2时,即电流为1A,则电阻在10s内产生的热量为
Q′=I′2 Rt=50J
(三)热量的小综合计算
中考中这类试题很多,解这类试题一是要搞清楚吸放热关系,二是注意能量转换关系,基本思路是Q吸=ηQ放是基本思路。
【例题3】在一把质量为500g的铝质电热水壶中,装有2kg水,用这把电热水壶把20℃的水加热到100℃,若该电热水壶的热效率为80%,问烧开这壶水需要消耗多少电能?〔c铝=0.88×103J/(kg•℃),c水=4.2×103J/(kg•℃)〕
【点拨】解决热学计算的问题,关键在于搞清吸收放热的关系,正确运用热量计算公式和焦耳定律的公式以及热平衡方程求解。解答此题时还要注意盛水容器本身的吸热问题,吸热部分是由水和壶两部分组成的。
【解答】
水与壶吸收的热量
Q=(c铝m铝+c水m水)△t=(0.88×0.5+4.2×2)×103×80=7.072×105(J)
消耗的电能W=Q/η=(7.072×105)/0.8=8.84×105(J)
二、关于电学部分的计算
(一) 关于电路的计算
1.有关欧姆定律的简单计算
运用欧姆定律进行简单的计算,首先应该明确以下几点:
(1)公式中的I、U、R代表同一段电路的电流、电压和电阻,而且R必须是纯电阻。
(2)必须将同一导体或同一段的电流、电压和电阻代入计算。
【例题4】有一电阻器,如果在它的两端加12V的电压,通过它的电流是0.4A,那么它的电阻
是多少?;如果在电阻器的两端加15V电压时,通过它的电流是多少A?它的电阻阻值是多少?
【点拨】对于同一段电路电阻不随电压变化而变化。本题容易出现错误的是违背“同一性”原
则,将公式中的三个物理量错误使用,导致对同一导体其电阻的阻值不同的错误结果。
【解答】
本题第一问很简单,对于第二、三问只给了一个已知条件,但实际上隐含着对同一个用电器,
如果没有说明其它因素影响电阻时,其阻值是不变的,因此,当这个用电器两端加15V电压时,通过的电流应该是15V/30Ω=0.5A,其电阻值R=30Ω。
2.电阻的串并联及其欧姆定律的综合练习
电路中电阻的串并联计算,应在理清串并联电路的基本特点的基础上,结合欧姆定律进行综合
性的练习,这类试题在中考试题中占了相当大的部分。
【例题5】某同学利用如图1所示的电路研究电流与电阻的关系,实验中他保持滑动变阻器滑
片位置不变,换用不同的定值电阻R(5Ω,10Ω,15Ω),使电阻成整数倍地变化,相应的电流记录于表中,分析实验数据后,得出结论:R两端电压不变时,R中的电流与R阻值不成反比;他得出错误结论的原因是 。
【解析】因为影响电流的因素有电压和电阻两个因素,所以研究电流和电阻关系时,应该保持电阻两端的电压一定。由电路图可以看出,R两端的电压UR=IR,而电流I=U总/(R+R变),所以UR=RU总/(R+R变)=U总/(1+R变/R),由题目中给定的条件可知:当R改变时,若R变不变,可以看出,UR随R的大小改变而变化,即在电阻改变时,却没有保持定值电阻R的两端电压不变,所以得不出正确的结论。正确的做法应该是在换用不同的定值电阻时,应调节滑动变阻器使定值电阻两端电压保持不变,然后再读取数据
并分析数据。
3.变化电路的定性分析和定量计算
电学的解题关键是要能够准确地辨别电路是串联电路还是并联电路,比较复杂的电路图能够准确地简化为等效的串、并联电路,然后运用串、并联电路中个电学的基本量之间的关系和两个定律正确解题。
电学试题中多元件电路也是常见的情况之一。同学们对于多元件电路感到比较困难,其原因有二:一是解题的步骤不清楚,二是解题中不能将复杂的电路简化为简单的串、并联等效电路,无法正确运用所学过的定律和概念。
多元件电路是指含有多个电表和用电器的电路。解答这类问题的基本步骤是:
1.明确电路中各用电器之间的连接方式是串联还是并联;
2.电路中的各个电表所测量的对象是谁;
3.电路发生变化后,用电器的连接方式、电表测量对象有无变化,或发生了什么变化。
还有一种情况是动态电路的计算,这类电路有两种:一种是利用开关的通断改变电路;另一种是利用滑动变阻器滑片的移动改变电路。由于动态电路的开关通断或变阻器滑片的移动,电路的连接以及电路中的各物理量也会随之改变,使得电路计算变的复杂,解答
此类试题,应抓好三个环节:
1.题图对照,侧重识图。
2.梳理条件,抓住关键,找出突破口。
3.明确解题思路、综合运用公式进行计算。
注意三个要点:
1.严格区分不同条件下的电路,学会简化电路。
2.针对不同条件下的电路,分别列出相应的关系式。
3.结合题目的已知条件,寻找解题的突破口并进行计算
【例题3】如图2所示的电路中,电源电压是12V且保持不变,R1=R3=4Ω, R2=6Ω.试求:
(1)当开关S1、S2断开时,电流表和电压表示数各是多少?
(2)当开关S1、S2均闭合时,电流表和电压表示数各是多少?
【解析】
(1)当开关S1、S2断开时,原电路图可变为图3所示
因为R2与R3是串联在电路中,所以,电路中的总电阻 R=R1+R2=6Ω+4Ω=10Ω
根据欧姆定律的电路中的电流I=U/R=1.2A
故电流表的示数为1.2A
电压表并联在R2两端,测的是R2两端的电压U2,根据欧姆定律的变形公式U=IR得
U2=IR2=1.2A×6Ω=7.2V
(2) 当开关S1、S2均闭合时,电阻R3被短路,电阻R1与R2并联在电路中,原电路可等效为图4所示电路,电压表示数为电源电压U=12V
R1与R2并联的总电阻为
R总=R1 R2/( R2+ R2)=2.4Ω,电流表测量干路电流为 I总=U/ R总=5A
解答此类问题,关键是要先根据不同条件先的开关闭合、断开情况,分析电路的连接情况以及各电表的作用,然后根据欧姆定律和串联、并联电路特点进行计算。有关电学其它方面的问题我们在以后的探索研究案例中再加以叙述。
物声科技2024
2024-10-28 广告
2024-10-28 广告
在力学试验过程监测中,北京物声科技有限公司采用高精度传感器与先进的数据采集系统,实时捕捉试验中的力学参数变化。通过实时监测,我们能确保试验数据的准确性和可靠性,及时发现并处理异常情况。我们的监测系统具有高度的稳定性和灵敏度,能够适用于多种复...
点击进入详情页
本回答由物声科技2024提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询