已知函数f(x)=lnx-ax+﹢[(1-a)/x]-1(a∈R)
(1)当=-1时求曲线f(x)在点(2,f(2))处的切线方程;(2)当a≤1/2时,讨论f(x)的单调性...
(1)当=-1时求曲线f(x)在点(2,f(2))处的切线方程;
(2)当a≤1/2时,讨论f(x)的单调性 展开
(2)当a≤1/2时,讨论f(x)的单调性 展开
2个回答
展开全部
函数f(x)求导,然后讨论,自己做 已知f(x)=lnx-ax+(1-a)/x-1 f'(x)=-(x-1)[(x-(1-a)/a)]/x <0 此时, f(x)单调减。.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
(1)当a=-1时,f(x)=1nx+x+2/x-1,x∈(0,+∞),
所以f′(x)=1x+1-2x2,因此,f′(2)=1,
即曲线y=f(x)在点(2,f(2))处的切线斜率为1,
又f(2)=1n2+2,y=f(x)在点(2,f(2))处的切线方程为y-(1n2+2)=x-2,
所以曲线,即x-y+1n2=0;
(2)因为f(x)=lnx-ax+
1-a/x-1,
所以f′(x)=
1/x-a+
a-1/x^2=-
ax2-x+1-ax2,x∈(0,+∞),
令g(x)=ax2-x+1-a,x∈(0,+∞),
(1)当a=0时,g(x)=-x+1,x∈(0,+∞),
所以,当x∈(0,1)时,g(x)>0,
此时f′(x)<0,函数f(x)单调递增减;
(2)当a≠0时,由g(x)=0,
即ax2-x+1-a=0,解得x1=1,x2=1a-1.
①当a=12时,x1=x2,g(x)≥0恒成立,
此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;
②当0<a<1/2时,1/2-1>1>0
x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减,
x∈(1,1a-1)时,g(x)>0,此时f′(x)>0,函数f(x)单调递增,
x∈(1a-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
③当a<0时,由于1a-1<0,
x∈(0,1)时,g(x)>0,此时f′(x)<0函数f(x)单调递减;
x∈(1,∞)时,g(x)<0此时函数f′(x)<0函数f(x)单调递增.
综上所述:
当a≤0时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,+∞)上单调递增
当a=1/2时,函数f(x)在(0,+∞)上单调递减
当0<a<1/2时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,1a-1)上单调递增;
函数f(x)在(1a-1,+∞)上单调递减.
所以f′(x)=1x+1-2x2,因此,f′(2)=1,
即曲线y=f(x)在点(2,f(2))处的切线斜率为1,
又f(2)=1n2+2,y=f(x)在点(2,f(2))处的切线方程为y-(1n2+2)=x-2,
所以曲线,即x-y+1n2=0;
(2)因为f(x)=lnx-ax+
1-a/x-1,
所以f′(x)=
1/x-a+
a-1/x^2=-
ax2-x+1-ax2,x∈(0,+∞),
令g(x)=ax2-x+1-a,x∈(0,+∞),
(1)当a=0时,g(x)=-x+1,x∈(0,+∞),
所以,当x∈(0,1)时,g(x)>0,
此时f′(x)<0,函数f(x)单调递增减;
(2)当a≠0时,由g(x)=0,
即ax2-x+1-a=0,解得x1=1,x2=1a-1.
①当a=12时,x1=x2,g(x)≥0恒成立,
此时f′(x)≤0,函数f(x)在(0,+∞)上单调递减;
②当0<a<1/2时,1/2-1>1>0
x∈(0,1)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减,
x∈(1,1a-1)时,g(x)>0,此时f′(x)>0,函数f(x)单调递增,
x∈(1a-1,+∞)时,g(x)>0,此时f′(x)<0,函数f(x)单调递减;
③当a<0时,由于1a-1<0,
x∈(0,1)时,g(x)>0,此时f′(x)<0函数f(x)单调递减;
x∈(1,∞)时,g(x)<0此时函数f′(x)<0函数f(x)单调递增.
综上所述:
当a≤0时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,+∞)上单调递增
当a=1/2时,函数f(x)在(0,+∞)上单调递减
当0<a<1/2时,函数f(x)在(0,1)上单调递减;
函数f(x)在(1,1a-1)上单调递增;
函数f(x)在(1a-1,+∞)上单调递减.
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询