非线性偏微分方程的突破

 我来答
终极至尊TAc49f
2016-05-26 · TA获得超过119个赞
知道答主
回答量:169
采纳率:66%
帮助的人:104万
展开全部

1.深入研究空间、时间、时滞对解的性质的影响,诸如静态解、周期解的存在性、解的存在性、渐近性等问题;寻求它们在含间断项的非线性偏微分方程方面的突破。
2.寻求和发现新的处理非单调、非凸不可微能量泛函的方法(如建立Ishikawa迭代序列收敛准则),建立发展型方程G-收敛准则,寻求可行的光滑方法将算子方程光滑化,创建新的先验估计方法。
3.应用现代数学所获得的理论,研究最有控制系统的微分方程,为控制系统设计、分析和计算提供一些重要的理论依据和方法。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式