如图,以知在△ABC中,AC=BC,∠C=90°,点N、P分别为AC、BC上一点,NP、AB的延长线交于点F.
(1)若BF=根号2PC,求证:PA=PF;(2)在(1)的条件下,若点P为BC的中点,求PN/PF的值;...
(1)若BF=根号2PC,求证:PA=PF;(2)在(1)的条件下,若点P为BC的中点,求PN/PF的值;
展开
展开全部
已知,△ABC是等腰直角三角形,
过点P作PM∥AB,交AC于点M;
则△CMP是等腰直角三角形,
可得:CM = CP ,MP = (√2)PC = BF ,∠AMP = 180°-∠CMP = 135°= ∠PBF ;
(1)
在△AMP和△PBF中,MP = BF ,∠AMP = ∠PBF ,AM = AC-CM = AB-CP = BP ,
所以,△AMP ≌ △PBF ,
可得:AP = PF ,即:PA = PF 。
(2)
因为,MP∥AB,
所以,MP/AB = CP/BC = 1/2 ,MP/AF = NP/NF ,
可得:AB = 2MP ,AF = AB+BF = 2MP+MP = 3MP ,
所以,PN/NF = MP/AF = 1/3 ,
可得:PN/PF = PN/(NF-PN) = 1/(3-1) = 1/2 。
过点P作PM∥AB,交AC于点M;
则△CMP是等腰直角三角形,
可得:CM = CP ,MP = (√2)PC = BF ,∠AMP = 180°-∠CMP = 135°= ∠PBF ;
(1)
在△AMP和△PBF中,MP = BF ,∠AMP = ∠PBF ,AM = AC-CM = AB-CP = BP ,
所以,△AMP ≌ △PBF ,
可得:AP = PF ,即:PA = PF 。
(2)
因为,MP∥AB,
所以,MP/AB = CP/BC = 1/2 ,MP/AF = NP/NF ,
可得:AB = 2MP ,AF = AB+BF = 2MP+MP = 3MP ,
所以,PN/NF = MP/AF = 1/3 ,
可得:PN/PF = PN/(NF-PN) = 1/(3-1) = 1/2 。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询