设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.
2个回答
展开全部
过点P作DA的平行线,过点A作DP的平行线,两者相交于点E;连接BE
因为DP//AE,AD//PE
所以,四边形AEPD为平行四边形
所以,∠PDA=∠AEP
已知,∠PDA=∠PBA
所以,∠PBA=∠AEP
所以,A、E、B、P四点共圆
所以,∠PAB=∠PEB
因为四边形AEPD为平行四边形,所以:PE//AD,且PE=AD
而,四边形ABCD为平行四边形,所以:AD//BC,且AD=BC
所以,PE//BC,且PE=BC
即,四边形EBCP也是平行四边形
所以,∠PEB=∠PCB
所以,∠PAB=∠PCB
因为DP//AE,AD//PE
所以,四边形AEPD为平行四边形
所以,∠PDA=∠AEP
已知,∠PDA=∠PBA
所以,∠PBA=∠AEP
所以,A、E、B、P四点共圆
所以,∠PAB=∠PEB
因为四边形AEPD为平行四边形,所以:PE//AD,且PE=AD
而,四边形ABCD为平行四边形,所以:AD//BC,且AD=BC
所以,PE//BC,且PE=BC
即,四边形EBCP也是平行四边形
所以,∠PEB=∠PCB
所以,∠PAB=∠PCB
东莞大凡
2024-08-07 广告
2024-08-07 广告
在东莞市大凡光学科技有限公司,我们利用Halcon软件处理机器视觉项目时,会用到自定义标定板以满足特定需求。Halcon支持用户根据实际应用场景自定义标定板形状与标记点。这不仅可以灵活应对不同工作环境,还能提高标定精度。通过调整圆点数量、间...
点击进入详情页
本回答由东莞大凡提供
展开全部
根据已知作过P点平行于AD的直线,并选一点E,使PE=AD=BC,利用AD∥EP,AD∥BC,进而得出∠ABP=∠ADP=∠AEP,
得出AEBP共圆,即可得出答案.
证明:作过P点平行于AD的直线,并选一点E,使PE=AD=BC,
∵AD∥EP,AD∥BC.
∴四边形AEPD是平行四边形,四边形PEBC是平行四边形,
∴AE∥DP,BE∥PC,
∴∠ABP=∠ADP=∠AEP,
可得:AEBP共圆(一边所对两角相等).
可得∠BAP=∠BEP=∠BCP,
∴∠PAB=∠PCB.
得出AEBP共圆,即可得出答案.
证明:作过P点平行于AD的直线,并选一点E,使PE=AD=BC,
∵AD∥EP,AD∥BC.
∴四边形AEPD是平行四边形,四边形PEBC是平行四边形,
∴AE∥DP,BE∥PC,
∴∠ABP=∠ADP=∠AEP,
可得:AEBP共圆(一边所对两角相等).
可得∠BAP=∠BEP=∠BCP,
∴∠PAB=∠PCB.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询