
设函数f(x)=ax^2+bx+c(a>0)且f(1)=-a/2(1)求证函数f(x)有两个零点
2个回答
展开全部
证明:∵f(1)=a+b+c=-a /2
∴3a+2b+2c=0.
∴c=-3a /2 -b.
∴f(x)=ax^2+bx-3a /2 -b.
判别式△=b^2-4a(-3a/2-b)=b^2+6a^2+4ab
=(2a+b)^2+2a^2
又∵a>0
∴△>0恒成立,故函数f(x)有两个零点
∴3a+2b+2c=0.
∴c=-3a /2 -b.
∴f(x)=ax^2+bx-3a /2 -b.
判别式△=b^2-4a(-3a/2-b)=b^2+6a^2+4ab
=(2a+b)^2+2a^2
又∵a>0
∴△>0恒成立,故函数f(x)有两个零点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询