根与系数的关系是什么?

 我来答
内蒙古恒学教育
2022-11-09 · 专注于教育培训升学规划
内蒙古恒学教育
向TA提问
展开全部
根与系数的关系一般指的是一元二次方程ax_+bx+c=0的两个根x1,x2与系数的关系。即x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。
根与系数的关系简单相关系数:又叫相关系数或线性相关系数。它一般用字母r表示。它是用来度量定量变量间的线性相关关系。复相关系数:又叫多重相关系数复相关是指因变量与多个自变量之间的相关关系。例如,某种商品的需求量与其价格水平、职工收入水平等现象之间呈现复相关系。
根与系数的关系,又称韦达定理。所谓的韦达定理是指一元二次方程根和系数之间的关系。
一个一元二次方程的根可由求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。
图为信息科技(深圳)有限公司
2021-01-25 广告
中学数学里的根与系数之间的关系又称韦达定理,指的是如果方程ax平方+bx+c=0(a不等于0)的两根为x1、x2,那么x1 一元二次方程根与系数关系 一元二次方程根与系数有什么关系 数学(关于一元二次方程根与系数的关系) 一元二次。 边缘计... 点击进入详情页
本回答由图为信息科技(深圳)有限公司提供
视界无垠
高粉答主

2019-08-19 · 每个回答都超有意思的
知道小有建树答主
回答量:275
采纳率:100%
帮助的人:7.7万
展开全部

根与系数的关系,又称韦达定理

所谓的韦达定理是指一元二次方程根和系数之间的关系。

一个一元二次方程的根可由求根公式求出,公式是含各项系数的代数式。因此一元二次方程的的根与各项系数之间一定存在着某种数量上的关系。

一般式,设它的两个根是和,则和与方程的系数a,b,c之间有如下关系:

根与系数关系要满足两个条件:

扩展资料:

韦达介绍

韦达全名叫弗朗索瓦·韦达(FrançoisViète,1540~1603),是一位法国杰出数学家。

他是历史上第一个系统地用字母来表示已知数、未知数及其乘幂的数学家,此举给代数理论研究带来了巨大便利。试想一下没有这些字母表示,纯粹靠文字叙述这些表达式该是多么令人糟心!

当然,他最为中学生所熟悉的工作就是讨论了方程根的多种有理变换,发现了方程根与系数的关系——韦达定理,因此在欧洲被尊称为“代数学之父”。

参考资料来源:百度百科-韦达定理

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
小柒学姐吖
科技发烧友

2021-08-27 · 智能家居/数码/手机/智能家电产品都懂点
知道小有建树答主
回答量:388
采纳率:100%
帮助的人:9.1万
展开全部

您好,根与系数的关系一般指的是一元二次方程ax²+bx+c=0的两个根x1,x2与系数的关系。即x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。

       
       

拓展资料

一、一元二次方程的定义

只含有一个未知数(一元),并且未知数项的最高次数是2(二次)的整式方程叫做一元二次方程。一般形式为:ax+bx+c=0(a≠0),其中ax是二次项,a是二次项系数;bx是一次项;b是一次项系数;c是常数项。使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。

二、一元二次方程必须同时满足三个条件:

1、是整式方程,即等号两边都是整式,方程中如果有分母;且未知数在分母上,那么这个方程就是分式方程,不是一元二次方程,方程中如果有根号,且未知数在根号内,那么这个方程也不是一元二次方程(是无理方程)。

2、只含有一个未知数;

3、未知数项的最高次数是2。

三、韦达定理及其逆定理作为一元二次方程的重要理论,主要应用于以下方面:

①不解方程求方程的两根和与两根积;

②求对称代数式的值;

③构造一元二次方程;

④求方程中待定系数的值;

⑤在平面几何中的应用;

⑥在二次函数中的应用。

       
       

四、常用求解一元二次方程的方法有哪些

1、因式分解法解一元二次方程的步骤

1、将方程右边化为0;

2、将方程左边分解为两个一次式的积;

3、令这两个一次式分别为0,得到两个一元一次方程;

4、解这两个一元一次方程,它们的解就是原方程的解.

例子:如解方程:x²+2x+1=0

解:利用完全平方公式因式解得:(x+1)=0

解得:x=-1

2、十字相乘法公式

x²+(p+q)x+pq=(x+p)(x+q)

例:1. ab+b²+a-b- 2

         =ab+a+b²-b-2

         =a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)

3、公式法(可解全部一元二次方程)求根公式

首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根

1.当Δ=b²-4ac<0时 x无实数根(初中)

2.当Δ=b²-4ac=0时 x有两个相同的实数根 即x1=x2

3.当Δ=b²-4ac>0时 x有两个不相同的实数根

当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a来求得方程的根

4、配方法(可解全部一元二次方程)

如:解方程:x²+2x-3=0

解:把常数项移项得:x²+2x=3

等式两边同时加1(构成完全平方式)得:x²+2x+1=4

因式分解得:(x+1)=4

解得:x1=-3,x2=1

       
       

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
worldbl
推荐于2017-12-16 · TA获得超过3.3万个赞
知道大有可为答主
回答量:6885
采纳率:100%
帮助的人:3445万
展开全部
“根与系数的关系”一般指的是一元二次方程ax²+bx+c=0的两个根x1,x2与系数的关系。
即 x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
轮看殊O
高粉答主

2019-07-18 · 说的都是干货,快来关注
知道大有可为答主
回答量:2.6万
采纳率:99%
帮助的人:763万
展开全部

“根与系数的关系”一般指的是一元二次方程ax²+bx+c=0的两个根x1,x2与系数的关系。

即 x1+x2=-b/a,x1·x2=c/a,这个公式通常称为韦达定理。

当判别式△=b²-4ac0时,方程有两个不等的实根.当方程有根时,设两根为x1,x2,x1+x2=-b/a,x1*x2=c/a,两根的和等于一次项系数与二次项系数的比的相反数,两根的积等于常数项与二次项系数的比。

扩展资料

根的判别式是判定方程是否有实根的充要条件,韦达定理说明了根与系数的关系。无论方程有无实数根,实系数一元二次方程的根与系数之间适合韦达定理。判别式与韦达定理的结合,则更有效地说明与判定一元二次方程根的状况和特征。 

韦达定理最重要的贡献是对代数学的推进,它最早系统地引入代数符号,推进了方程论的发展,用字母代替未知数,指出了根与系数之间的关系。韦达定理为数学中的一元方程的研究奠定了基础,对一元方程的应用创造和开拓了广泛的发展空间。

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(11)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式