急,高等数学,画圈那两题
展开全部
(1) f(x) = x^2+1/x, 定义域 x ≠ 0,
f'(x) = 2x - 1/x^2 = (2x^3 - 1)/x^2, 得驻点 x = 1/2^(1/3)
f''(x) = 2 + 2/(x^3) , f''([1/2^(1/3)] > 0,
极小值 f[1/2^(1/3)] = 3/2^(2/3)
(2) f(x) = x + arctanx
f'(x) = 1 + 1/(1+x^2) = (2+x^2)/(1+x^2) > 0
函数单调增加, 最小值 f(0) = 0; 最大值 f(1) = 1+π/4
f'(x) = 2x - 1/x^2 = (2x^3 - 1)/x^2, 得驻点 x = 1/2^(1/3)
f''(x) = 2 + 2/(x^3) , f''([1/2^(1/3)] > 0,
极小值 f[1/2^(1/3)] = 3/2^(2/3)
(2) f(x) = x + arctanx
f'(x) = 1 + 1/(1+x^2) = (2+x^2)/(1+x^2) > 0
函数单调增加, 最小值 f(0) = 0; 最大值 f(1) = 1+π/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询