积分公式
展开全部
常见的有:f(x)->∫f(x)dx,k->kx,x^n->[1/(n+1)]x^(n+1),a^x->a^x/lna,sinx->-cosx,cosx->sinx,tanx->-lncosx,cotx->lnsinx。
积分的计算要比导数的计算灵活、复杂,为了实用的方便,往往把常用的积分公式汇集成表,这种表叫作积分表。求积分时,可根据被积函数的类型,在积分表内查得其结果,有时还要经过简单变形才能在表内查得所需的结果 。
扩展资料
积分的一个严格的数学定义由波恩哈德·黎曼给出(参见条目“黎曼积分”)。黎曼的定义运用了极限的概念,把曲边梯形设想为一系列矩形组合的极限。从十九世纪起,更高级的积分定义逐渐出现,有了对各种积分域上的各种类型的函数的积分。
比如说,路径积分是多元函数的积分,积分的区间不再是一条线段(区间[a,b]),而是一条平面上或空间中的曲线段;在面积积分中,曲线被三维空间中的一个曲面代替。对微分形式的积分是微分几何中的基本概念。
参考资料来源:百度百科-积分表
展开全部
你是要不定积分的基本公式吗?
1)∫kdx=kx+c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(a^2-x^2)dx=arcsin(x/a)+c
11)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c
14) ∫sec^2 x dx=tanx+c;
15) ∫shx dx=chx+c;
16) ∫chx dx=shx+c;
17) ∫thx dx=ln(chx)+c;
18)∫k dx=kx+c
19) ∫1/(1+x^2) dx=arctanx+c
20) ∫1/√(1-x^2) dx=arcsinx+c
21) ∫tanx dx=-In|cosx|+c
22) ∫cotx dx=In|sinx|+c
23) ∫secx dx=In|secx+tanx|+c
24) ∫cscx dx=In|cscx-cotx|+c
25) ∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c
26) ∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c
1)∫kdx=kx+c
2)∫x^udx=(x^(u+1))/(u+1)+c
3)∫1/xdx=ln|x|+c
4) ∫a^xdx=(a^x)/lna+c
5)∫e^xdx=e^x+c
6)∫sinxdx=-cosx+c
7)∫cosxdx=sinx+c
8)∫1/(cosx)^2dx=tanx+c
9)∫1/(sinx)^2dx=-cotx+c
10)∫1/√(a^2-x^2)dx=arcsin(x/a)+c
11)∫1/(a^2+x^2)dx=1/a*arctan(x/a)+c
12)∫1/(a^2-x^2)dx=(1/2a)ln|(a+x)/(a-x)|+c
13)∫secxdx=ln|secx+tanx|+c
14) ∫sec^2 x dx=tanx+c;
15) ∫shx dx=chx+c;
16) ∫chx dx=shx+c;
17) ∫thx dx=ln(chx)+c;
18)∫k dx=kx+c
19) ∫1/(1+x^2) dx=arctanx+c
20) ∫1/√(1-x^2) dx=arcsinx+c
21) ∫tanx dx=-In|cosx|+c
22) ∫cotx dx=In|sinx|+c
23) ∫secx dx=In|secx+tanx|+c
24) ∫cscx dx=In|cscx-cotx|+c
25) ∫1/√(x^2+a^2) dx=In(x+√(x^2+a^2))+c
26) ∫1/√(x^2-a^2) dx=|In(x+√(x^2-a^2))|+c
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
什么积分公式?
追问
呵呵,找到了。谢谢了!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询